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Lensless holography promises compact, low-cost optical apparatus designs with similar performance to traditional
imaging setups. Here, we propose the use of a silicon micro-LED fabricated in a commercial CMOS microelectron-
ics process as the illumination source in a lensless holographic microscope. Its small emission area (<4 µm2) ensures
high spatial coherence without the need for a pinhole and results in a large NA setup, circumventing the limits to the
source-to-sample distance encountered by conventional lensless holography apparatus. The scene is reconstructed using
an untrained deep neural network architecture that simultaneously performs spectral recovery by learning from the
given single experimental diffraction intensity. We envision this synergetic combination of CMOS micro-LEDs and the
machine learning framework can be used in other computational imaging applications, such as a compact microscope
for live-cell tracking or spectroscopic imaging of biological materials. ©2022Optica Publishing Group under the terms of the

Optica Open Access Publishing Agreement
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1. INTRODUCTION

Lensless imaging is a promising technique to realize low cost, high
resolution, and large field-of- view (FoV) microscopes without
requiring bulky and expensive optical components such as objec-
tives and lenses [1]. It has been widely used in coherent diffraction
imaging [2–7], ptychography [8–10], and phase tomography
[11–14].

In lensless in-line holography, a (partially) spatially and tempo-
rally coherent light source illuminates the sample of interest, and a
camera records the coherent interaction between the light scattered
by the sample and the unscattered illumination light in the form of
a hologram [15]. Computational backpropagation of the recorded
hologram allows the recovery of the image at the sample plane
[16,17] with a resolution usually limited by the pixel size and total
area of the camera [18]. Recording multiple holograms at different
positions both in the axial and transverse plane can improve the
resolution to below a submicrometer level [19,20]. In-line hologra-
phy microscopes have been employed for a variety of applications,
including particle tracking [21], environmental monitoring [22],
biological sample imaging [23], and metrology [24].

One of the main factors limiting the compactness and flexibility
of lensless holographic microscopes is the requirement for spatial

coherence. Usually, an LED is used as the illumination source,
which requires the use of a pinhole to ensure a large enough degree
of spatial coherence [25]. To reduce alignment tolerances and opti-
cal losses, big pinholes with diameters in the range of 20 -50µm are
used, resulting in a low NA for the illumination (NA≈ 0.62λ/r ),
which requires a source-to-sample separation on the order of 10 cm
to ensure that the full FoV of the camera is illuminated. A further
reduction in the form factor of lensless holographic microscopes
could result in increased adoption of the this technique by enabling
integration in portable devices and possibly even personal devices
such as watches or phones. However, this change requires rethink-
ing the illumination source and shift from the ubiquitous LED +
pinhole configuration.

Lensless holography requires computational backpropagation
to retrieve an image at the sample plane. Traditional reconstruction
methods require detailed knowledge of the experimental setup
for accurate reconstruction and are sensitive to nonidealities such
as optical aberrations, the presence of noise, and the twin image
problem. Deep neural network architectures have been widely
used to improve the quality of image reconstruction and have
been shown to be robust to such nonidealities [5,7,26–29]. Of
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Fig. 1. CMOS LED light source and holography apparatus. (a) On the top, a micrograph of the 2 mm× 3 mm 55 nm bulk CMOS chip is shown, as
well as a closeup of the tapered LED source. The inset shows the light emission spot when the LED is forward biased, demonstrating an emission spot below
1.3 µm× 1.3 µm. On the bottom, a schematic of the LED configuration is shown. 10µm long tapers in the polysilicon layer are used to inject carriers into
a crystalline silicon pillar region via breakdown of the thin gate oxide. Once in the crystalline silicon, phonon-assisted carrier recombination results in light
emission. (b) The experimentally measured emission spectrum when the LED source is biased at a current of 6 mA. The spectrum has an FWHM of 450 nm
with a peak wavelength around 1100 nm. (c) Schematic of the lensless holography microscope. The light emitted by the CMOS LED illuminates the sam-
ple, and the coherent interaction between the light that interacts with the sample and the unscattered light is recorded by a CMOS camera in the form of a
hologram. The small emission spot of the CMOS LED eliminates the need for a pinhole, and its large numerical aperture allows for placement of the source
very close to the sample, resulting in a compact setup.

particular importance here is how to deal with broadband illu-
mination sources: If the illumination source has a finite spectral
bandwidth, the assumption of monochromatic illumination typ-
ical of traditional reconstruction techniques limits the achievable
resolution. In [30,31], a modification of monochromatic iterative
phase retrieval using a priori known source spectrum was intro-
duced for applications in X-ray imaging. Additionally, broadband
diffraction models to generate object-diffraction pairs have been
used in end-to-end deep neural networks for object retrieval [32].
For these implementations, however, access to the prior knowledge
of the source spectrum is of concern, which requires an extra step
for spectral measurements with an optical spectrum analyzer or
spectroscopy.

In this work, we present what we believe, to the best of our
knowledge, is a novel lensless holographic microscope incorpo-
rating advancements in both the hardware and the computational
reconstruction algorithm to address the aforementioned issues.

The untrained reconstruction demonstrated here allows us
to use novel light sources without prior knowledge of the source
spectrum or beam profile. We employ, what we believe, to the best
of our knowledge, is a novel silicon micro-LED fabricated in a fully
commercial, unmodified bulk CMOS microelectronics process
(GlobalFoundries 55BCDL). While silicon is usually not regarded
as a good light emitter due to its indirect bandgap, its efficiency is
set by the competition between radiative and nonradiative proc-
esses (surface and Shockley–Read–Hall recombination). Our LED
design, shown in Fig. 1(a), minimizes nonradiative recombination
by taking advantage of the high-quality surface passivation of

the crystalline silicon with the native oxide. The surface recom-
bination velocity can be three to four orders of magnitude lower
than in III–V materials typically used for the realization of LEDs.
Our spectrally broadband LED uses a vertical n–p junction in
crystalline silicon that is formed between an n-doped pillar and
the p-doped substrate, similar to [33] scaled to submicrometer
dimensions. Doped polysilicon tapers [the orange and green
shapes in Fig. 1(a)] are used to inject the carriers into the crystalline
silicon through the breakdown of the <3 nm thick gate oxide
[34]. Because these are homojunction devices, recombination
occurs in both the n region (which is 500 nm× 500 nm) and the
p substrate, where recombination is diffuse. The spatially local-
ized recombination in the n region provides spatially coherent,
but spectrally broad, illumination for digital holography. These
nanoscale devices are operated at high current density [MA/cm2

],
which results in additional radiation from the submicron p-contact
regions due to impact ionization [35]. The combination of spa-
tially confined LED emission and submicron thermal emission
gives rise to a very broad spectral bandwidth with sufficient spatial
coherence for use as a holographic light source.

2. METHODS

As shown in Fig. 1(a), light emission is confined to the crystalline
silicon island and its emission area is around 1.3 µm× 1.3 µm.
The spectrum of the emitted light measured with a diffractive spec-
trometer using an InGaAs camera is shown in Fig. 1(b), revealing
a peak wavelength of 1.1 µm (close to the bandgap of silicon) and
a 3 dB spectral bandwidth of about 450 nm. Such a large optical
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Fig. 2. Untrained deep neural network framework for simultaneous spectral and holographic reconstruction. Two untrained deep neural net-
works were used: one for phase and one for amplitude, and then we backpropagate for the network weights θα, θϕ , as well as the learned spectrum
γn (n = 1, 2, · · · , N).

bandwidth results in a lower temporal coherence compared to typi-
cal commercial LEDs that have spectral bandwidths below 20 nm.
This motivates the use of the spectroscopic image reconstruction
framework as presented below.

A schematic of the experimental apparatus is shown in Fig. 1(c).
The small emission area of our CMOS LED source ensures reason-
able spatial coherence without a pinhole, as well as a large NA that
allows the source-to-sample distance to be greatly decreased below
5 mm while maintaining a large FoV. This results in a very compact
system with a total source-to-camera distance below 1 cm. We use
a ZWO ASI1600MM CMOS camera with a pixel pitch of 3.8µm
and a total imaging area of 17.7× 13.4 mm.

On the reconstruction algorithm side, the complex amplitude
of objects is expressed with two separate deep neural networks
(one for amplitude and one for phase), and the source spectrum
is learned from a given experimental diffraction intensity. We use
an untrained approach called deep image prior (DIP) for the deep
neural network implementation [36]. DIP works as an alterna-
tive, highly nonlinear representation of multidimensional objects
with a uniformly sampled random input noise, parameterized
with neural network weights. DIP has been applied to denois-
ing [36–38], phase retrieval [27,39], holography [40], Fourier
ptychography [41], and tomographic imaging [42–45], whose
implementation is similar to implicit neural representation that
represents an object onto input coordinates as a continuous func-
tion [46–48]. Our computational framework also accounts for
the nonmonochromaticity of the illumination and can learn the
relative contributions of each wavelength to the recorded hologram
without any previous knowledge of the spectrum. In essence, our
algorithm can estimate the optical spectrum of the illumination,
which is demonstrated to be comparable to the experimentally
measured source spectrum and improves the quality of the recon-
structed image. Finally, we adopt total variation regularization to
suppress fringe pattern artifacts often entailed with inversion from
diffraction intensities due to its ill-posed nature.

Figure 2 visualizes the training procedure of the proposed algo-
rithm. Uniformly sampled random noise z is the input to two DIP
architectures representing absorption and phase delay profiles of
the object of interest. The architectures are parametrized by θα and
θϕ , respectively. A sigmoid activation function is applied at the end
of the architectures to make the absorption profileα range between
[αmin, αmax](= [0.0, 1.0]) and the phase profile ϕ between
[ϕmin, ϕmax]. Together, they define the complex-amplitude object
f = exp(iϕ + α), gradually updated throughout training. To

account for the spectral shape of the illumination, we uniformly
sample the wavelength axis with N points (i.e., λ1, λ2, · · · , λN),
and define forward operators for each wavelength. Here, we use
a nonparaxial free-space propagation kernel [49] to describe the
diffraction of the optical wavefield from the object when propa-
gating the sample-camera distance 1z in free space along the
propagation direction

Hλn ,1z( f )

=F−1
[
F[ f ] ◦ exp

(
−i1z

(
kn − Re

[√
k2

n − k2
x − k2

y

]))]
,

kn =
2π

λn
.

(1)

Parameters γn (n = 1, 2, · · · , N) account for the unequal
contribution of each wavelengthλn to the experimental diffraction
intensity Idet:

Îdet =

N∑
n=1

γn

∣∣Hλn ,1z( f )
∣∣2. (2)

Now, the inverse problem is reduced to finding joint solutions
α and ϕ that make Îdet as close as possible to Idet and to simultane-
ously optimize the underlying imaging physics represented with
λn ’s. To solve the inverse problem, we use the Adam optimizer [50]
and minimize the loss function defined as

L( Îdet, Idet; θα, θϕ, γ1, γ2, · · · , γN)

=MSE
(

Îdet, Idet

)
+ κ1NPCC

(
Îdet, Idet

)
+ κ2

(
1−

N∑
n=1

γn

)

+ κ3

N∑
n=1

ReLU(−γn)+ κ4(TV(α)+TV(ϕ)),

(3)

where MSE stands for mean-squared error, NPCC for nega-
tive Pearson correlation coefficient, and TV for total variation.
The mean-squared error term has been a standard for training
DIP architectures [36,38], originating from the derivation of a
maximum a posteriori (MAP) estimate with the assumption of
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Fig. 3. Qualitative comparison in 20- µm bead reconstructions of a baseline method and the proposed architecture for a narrowband commercial LED
(top) and broadband CMOS LED (bottom). Quantitatively, the Pearson correlation coefficient was used as a metric to compare the reconstructions with
the brightfield image as the ground truth (see Supplement 1, Fig. S2). Experimentally measured and learned spectra for both illumination sources are also
compared.

Gaussian noise on a measurement. Equation (3) also includes
three regularization terms with regularization weights fixed as
κ1, κ2 = 10, κ3 = 0.25 with a tunable κ4. The first regularizer is
the NPCC, which has been proven to stabilize the training process
and achieve higher reconstruction fidelity in phase retrieval appli-
cations with convolutional neural networks [26,51]. Similarly,
we also observe this in the current study as well as speeding up
retrieval of γn ’s. The second regularizer is essentially a Lagrange
multiplier imposing the constraint on γn ’s to be normalized with
their sum being 1 and non-negative. Finally, TV is applied to both
the absorption and phase delay profiles of the object f to smooth
out the fringe pattern artifacts. TV regularization weight and 1z
are image-specific, and the details in these hyperparameters can be
found in Supplement 1, Table S1. The optimization process takes
between 400 and 600 epochs for convergence, with a total compu-
tation time below 10 minutes. For more details, see Supplement 1,
Table S2. All optimization procedures are performed on the MIT
Supercloud [52] with Intel Xeon Gold 6248 and NVIDIA Volta
V100 GPU with 32 GB VRAM.

3. RESULTS

We first demonstrate that the proposed untrained deep neural
network framework works for different illumination sources with
different characteristics. To do so, we compare the reconstructions
of a baseline method and the proposed deep image prior architec-
ture under the illumination of a narrowband commercial LED
(λc = 810 nm, bandwidth '50 nm) and the broadband CMOS
micro-LED presented in this work (λc = 1.1 µm, bandwidth
'450 nm), as shown in Fig. 3.

A steepest gradient descent algorithm is considered as the base-
line method, and the complex-amplitude object f = exp(iϕ + α)
is retrieved by solving the optimization problem

f̂baseline = argmin f

1

2

∣∣∣∣∣
N∑

n=1

ξn

∣∣Hλn ,1z( f )
∣∣2 − Idet

∣∣∣∣∣
2
 , (4)

where Idet is the experimental diffraction intensity and
ξn (n = 1, 2, · · · , N) is fixed to the measured spectrum of
either the commercial LED or our CMOS LED.

The proposed model reconstructions presented in Figs. 3 and
4 are generated with γn (n = 1, 2, · · · , N) in Eq. (3) initialized
as a uniform distribution with N = 50 (commerical LED) and
N = 100 (CMOS LED) samples. A larger number of samples
(N) is considered for the CMOS LED to cover its much broader
spectrum. More details are presented in Supplement 1, Fig. S1.

Figure 3 compares the resulting reconstructions of the baseline
and proposed methods, showing better contrast and a background
with fewer artifacts when we employ our untrained deep neural
network framework. Here, the total variation effectively suppresses
fringe pattern artifacts existing around the beads, resulting in
reconstructions with improved contrast. Table S2 in Supplement
1 shows a quantitative comparison between the baseline and our
proposed method. Figure 3 also shows the illumination spectrum
learned with our algorithm and compares it to the real spectrum
measured experimentally with a spectrometer. The learned γn ’s of
both sources are in close agreement to its experimentally measured
spectra up to 1200 nm, equivalent to a blind spectroscopic analysis
solely based on an experimental diffraction intensity. The proposed
method achieves a Pearson correlation coefficient of 0.9838 (com-
mercial LED) and 0.9831 (CMOS LED) in blind recovery of the
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Fig. 4. Qualitative comparison between brightfield image, NIR micrographs, and complex object reconstructions by the proposed untrained deep neu-
ral network framework under our CMOS micro-LED illumination across different biological specimens.

sources up to 1200 nm. Considering our ZWO CMOS camera’s
responsivity falls off to nearly zero above 1200 nm, as shown in
Supplement 1, Fig. S3, we should not expect spectral recovery
above the cutoff wavelength.

We further demonstrate the performance of the proposed
framework with different types of biological specimens, and the
reconstructions are shown in Fig. 4. Under the illumination of
our CMOS LED at a near-IR region, the dandelion and housefly
mouth specimens are mostly absorptive. The proposed model can
resolve object features with better contrast in either amplitude or
phase, thus better matching the corresponding brightfield image
and NIR micrograph.

Hyperparameters fixed and initialized in Eq. (3) for imag-
ing these biological specimens are presented in Supplement 1,
Table S1. We note that the TV regularization parameter κ4 must
be carefully chosen. Objects with more complicated features
require a much smaller κ4 compared to objects with simpler
features to avoid oversmoothing. We also note that the compu-
tational reconstruction distances listed in Supplement 1, Table
S1, are significantly larger than the physical-sample-to-camera
distance in the experimental setup. This is because the LED
source generates a distorted spherical wave but the reconstruction
algorithm assumes plane wave illumination, an approach that
simplifies the computation and does not decrease the reconstruc-
tion quality, but requires rescaling the reconstruction distance:
dsample_camera−recon = d2

source_camera−setup/dsample_camera−setup [17], as
shown in Table S1 in Supplement 1.

4. DISCUSSION

In conclusion, we have presented a lensless holography setup that
employs what we believe, to the best of our knowledge, is a novel

silicon LED realized in an unmodified commercial CMOS process
as the illumination source. Its small emission area eliminates the
need for a pinhole and its large NA allows the source-to-camera
distance to be reduced to below 1 cm, resulting in a highly compact
microscope. We also employ a new, untrained deep neural net-
work framework that accounts for the broad spectral bandwidth
of the source and that includes total variation regularization for
improved contrast. Although the method is iterative and requires
a few minutes to get estimates, it saves time for data preparation as
paired datasets are not required for training. It also provides blind
source spectrum recovery from a single diffracted intensity pat-
tern at the same time as holographic image reconstruction, which
makes a complete departure from any existing supervised learning
approaches.

Improvements to the obtained resolution can be achieved by
subpixel sampling techniques using an array of our CMOS LEDs,
similar to [53]. It is worth noting that we can leverage the low cost
and scalability of the microelectronics CMOS processes to imple-
ment such an array without increasing the system complexity, cost,
or form factor. Furthermore, control electronics (and possible even
the imager) could be integrated in the same chip as the illumination
by exploiting the available electronics in the process. On the com-
putational side, approaches to increase resolution under low light
conditions, such as in [5,7,26], could be used to increase the image
quality. We believe this combination of broadband CMOS LEDs
with optical spectrum-aware machine learning frameworks could
enable applications such as spectroscopic imaging of biological
materials and new metrology techniques.
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