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Abstract: Raman microscopy with resolution below the diffraction limit is demonstrated on
sub-surface nanostructures. Unlike most other modalities for nanoscale measurements, our
approach is able to image nanostructures buried several microns below the sample surface while
still extracting details about the chemistry, strain, and temperature of the nanostructures. In this
work, we demonstrate that combining polarized Raman microscopy adjusted to optimize edge
enhancement effects and nanostructure contrast with fast computational deconvolution methods
can improve the spatial resolution while preserving the flexibility of Raman microscopy. The
cosine transform method demonstrated here enables significant computational speed-up from
O(N3) to O(Nlog N) - resulting in computation times that are significantly below the image
acquisition time. CMOS poly-Si nanostructures buried below 0.3− 6 µm of complex dielectrics
are used to quantify the performance of the instrument and the algorithm. The relative errors of
the feature sizes, the relative chemical concentrations and the fill factors of the deconvoluted
images are all approximately 10% compared with the ground truth. For the smallest poly-Si
feature of 230 nm, the absolute error is approximately 25 nm.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Raman microscopy, or micro-Raman spectroscopy, is a powerful tool to investigate the fundamental
properties of materials including the chemical composition, strain, and temperature distribution.
[1,2] In the past two decades, multiple research fields have been significantly impacted by this
technique. For example, for low-dimensional materials such as graphene and MoS2, Raman
spectroscopy is used to study the phonon dispersion and the inter-layer interaction because
Raman scattering directly probes the vibration modes. [3,4] In biological research, Raman
microscopy is used to image living cells because it is non-invasive and label-free. [5,6] However,
compared with other widely used characterization tools such as scanning electron microscopy
(SEM), [7] atomic force microscopy (AFM) [8] and stochastic optical reconstruction microscopy
(STORM), [9] Raman microscopy has poor spatial resolution due to the optical diffraction
limit. This critical disadvantage limits the application of Raman microscopy when higher
spatial resolution is required. In this work, we demonstrate that combining polarized Raman
microscopy adjusted to optimize edge enhancement effects and nanostructure contrast with
fast computational deconvolution methods can improve the spatial resolution while preserving
the flexibility of Raman microscopy. The cosine transform method demonstrated here allows
for significant computational speed-up from O(N3) to O(N log N) and addresses the required
constraints including non-differentialable regularization and non-negative pixel values.

In the literature, various techniques have been proposed to enhance the spatial resolution of
Raman microscopy. For example, researchers have modified the instruments to couple Raman
scattering with near-field enhancement effects. One successful example is the tip-enhanced
Raman spectroscopy (TERS), which is based on the near-field enhancement from the metallic
tip-sample interaction. [10] A typical TERS setup is not limited by the diffraction limit but the size
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of the tip apex. There are multiple reports on TERS with sub-10 nm spatial resolutions. [11–15]
However, TERS can only resolve features on the sample surface and the near-field enhancement
is sensitive to the tip morphology. [10,12] These drawbacks hinder the the accessibility and
universality of TERS and other similar near-field instruments.

In the past decade, researchers also demonstrated resolution enhancement of Raman microscopy
using far-field methods which were originally used for fluorescence microscopy. For example,
Watanabe et al. reported structured line illumination (SLI) Raman microscopy of which the
spatial resolution is 1.4× higher than the theoretical limit in wide-field microscopy. [16] Based
on image scanning microscopy (ISM), Roider et al. reported a fiber-coupled scanning Raman
microscope which has a hexagonal packed collection fiber bundle and a multiline detector.
[17] By pixel reassignment, they demonstrated a 30% resolution enhancement. The idea of
localization fluorescence microscopy [9] is also adapted with surface enhanced Raman scattering
(SERS). [18–20] Moreover, similar to stimulated emission depletion (STED) microscopy, [21]
nonlinear saturation effects have been exploited with stimulated Raman scattering (SRS) and
coherent anti-Stokes Raman scattering (CARS). [22–24] . Among these techniques, as with
TERS, the SERS based approaches are not suitable for the imaging of nanostructures located
several microns below the surface. The main limit of the STED-like and other nonlinear methods
is that the damage threshold of the sample has to be high because intense laser sources are often
required to induce the nonlinearity. [25] SLI only has spatial resolution enhancement parallel to
the illumination line while the resolution in the perpendicular direction is still limited by the
confocal slit width. The ISM technique is promising and universal with the spatial resolution
limited by the system point-spread-function (PSF). As can be seen in this report, in principle, our
approach can be combined with the ISM technique to further enhance the spatial resolution.

Without intensive modification of the instruments, conventional microscopes are used alongside
computational reconstruction of the ground truth images. In this scheme, similar to most optical
image processing, the observed image is treated as the convolution of the PSF with the ground truth
image. Multiple deconvolution algorithms have been reported for confocal Raman microscopy. In
2003 and 2006, Tomba et al. formalized the deconvolution problem as a quadratic programming
problem with Tikonov regularization to resolve liquid-polymer interfaces of 4 µm. [26,27] In
2016, Cui et al. used a Markov-Poisson maximum a posterior (MPMAP) algorithm with an
iterative kernal to resolve 200 nm poly methyl methacrylate (PMMA) patterns on a Si wafer
while the diffraction limit was approximately 300 nm. [28] In 2019, Winterauer et al., used a
primal-dual method for interior point least square (IPLS) with the non-negativity constraint to
reconstruct the image of poly-(3,4 ethylenedioxythiophene) (PEDOT) nanowires on Si substrate.
[29] They demonstrate a spatial resolution of 125 nm while the diffraction limit was approximately
320 nm. Recently, researchers have considered the hyperspectral nature of Raman images in the
context of resolution enhancement. In 2015, Offroy et al. coupled deconvolution algorithm and
chemometrics to characterize aerosols. [30] In their algorithm, the spectra and the concentration
distribution of the pure chemicals are extracted iteratively by multivariate curve restoration -
alternating least squares (MCR-ALS). The image of the concentration is then divided into multiple
lower resolution sub-images with pixel shift and optimization is performed on this multi-frame
image set. They achieved 65% enhancement of the spatial resolution based on the ’step-edge’
criterion. In 2020, Winterauer et al. reported the results of resolution enhancement on PEDOT
nanowires using a hyperspectral-based pipeline. [31] They extracted the convolved images using
principle components analysis (PCA) and the deconvolution was achieved using IPLS method
similar to their previous report. The smallest resolvable separation of two nanowires was 14 nm.
In general, the computational methods can approximately enhance the spatial resolution with a
factor of 30%- 100%.

Computational approaches for resolution enhancement of Raman microscopy are desirable
because minimal instrument modification is required and they can also be used together with
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other advanced techniques as long as optical diffraction influences the imaging. However, these
approaches are often not well specified and several critical issues are not clearly discussed in the
literature. First, in the deconvolution algorithms, the symmetry of the PSF and the boundary
conditions are usually assumed but not utilized to accelerate the computation. This is due
to the difficulties of incorporating the regularization terms and the non-negativity constraint
into the inverse problem. As we will present in Section 4, the complexity of a straightforward
deconvolution algorithm is O(N3) where N is the total pixel number. Meanwhile, the total
acquisition time of a Raman image scales with N. Therefore, a fast deconvolution algorithm is
specifically meaningful for Raman images to lower the computational overhead. Second, the
dependence of the deconvolution results on the input parameters is not fully investigated. As an
ill-posed problem, the deconvolution is usually solved with regularization terms and the proper
choice of the regularization parameters is non-trivial. In the literature, these parameters are
usually empirically selected. Another input parameter is the PSF which is the convolution kernel
and is usually experimentally measured but the effect of the measurement errors on the results
is unknown. Third, most authors do not quantify the error of the deconvolved images with the
ground truth or only compare the feature sizes. Other critical properties, such as the chemical
concentrations, are rarely discussed while one of the key advantage of Raman microscopy is the
capability of chemical analysis.

The experimental aspect of sub-diffraction-limit Raman microscopy also requires further
investigation. In terms of the samples under test, no result on a buried sample has been reported
but these samples are of great interest in many fields. For example, the devices buried under a few
hundred nm to several µm of dielectric materials are common in modern integrated circuit (IC)
industry, [32,33] where Raman microscopy is used as a characterization tool. For these samples,
the PSF measurements should be performed with care. As Everall pointed out in a series of
reports, [34–36] for high NA objectives, which are typically used for Raman setup, the existence
of hundreds nm of oxide can lead to significant spherical aberration and thus the PSF may be
distorted. In terms of the instrumentation, in the literature, simple Raman microscopes are
usually used and only the total intensity of Raman scattering is considered while other properties
of Raman scattering are not utilized. For example, it is well known that the Raman scattering is
highly polarization-sensitive. [37–40] As we will present in this work, the polarization selection
can be used to enhance the contrast of a Raman image.

In the work, we report our computational polarized 785 nm Raman microscopy on poly-Si
nanostructures buried 0.3 − 6 µm below the surface on two complementary metal-oxide-
semiconductor (CMOS) chips. The deconvolution is solved iteratively using an algorithm based
on the fast cosine transform, which has complexity of O(N log N). The dependence of the
deconvolved images on the regularization parameter and the size of the PSF is discussed and we
suggest that one train the regularization parameter on a separate pattern. The errors of the feature
sizes, the relative chemical concentrations, and the fill factors of the deconvolved images are
investigated. The report is organized as follows. In Section 2, we present our Raman microscope
and the test samples. In Section 3, we discuss the measurement of the PSF. In Section 4, we
review the algorithm used for the deconvolution. In Section 5, we present the deconvolution
results and the related discussions.

2. Instrumentation and samples

In this section, we present our polarized Raman microscope and the test samples. In Fig. 1(a), the
schematic plot of our setup is shown. We emphasize that the polarization configuration is built
for two reasons. First, as will be elaborated in the next section, the polarization selection rule
can be used to eliminate the signal from crystalline substrates. Second, the polarization can be
aligned with the features to enhance the Raman signal. This is known as the edge enhancement
effect due to the electric field localization, which is similar to the tip enhancement effect but does
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not require external confinement. Researchers have utilized this effect to improve the spatial
resolution on Si and Ge stripes and measure the local strain fields. [37,38,41] It has been shown
that the strength of the electric field localization depends on the polarization. For example,
consider a Si/SiO2 interface, the tangential electric field is continuous while the perpendicular
electric field decreases on the Si side because the dielectric constant of Si is multiple times larger
than SiO2. The effect is more significant when the interface is further reduced to a corner. We
will also discuss this effect in the next section.

Fig. 1. (a) The schematic plot of our polarized Raman microscope, the layer stacks of
(b) sample A and (c) sample B, and the bright-field images of representative patterns on
the poly-Si layer of (d) sample A and (e) sample B. In (a), the red and the purple arrows
indicate the beam path of the excitation and the Raman light, respectively. The red and the
purple double-headed arrows indicate the polarization directions in the corresponding beam
path. The orange solid and dashed arrows indicate the beam path of the illumination and
the reflection path of the bright-field microscope, respectively. The multi-colored arrows
in the spectrometer indicate the dispersed spectrum. Labels in (a) are listed as follows.
DBR: 785 nm distributed Bragg reflector laser. PMF: polarization-maintaining fiber. ASL:
aspherical lens. LLF: 785 nm laser line filter. HWP: 785 nm half-wave plate. M: mirror.
ACL: achromatic lens. DM: dichroic mirror. PBS: polarization beam splitter. AHWP:
achromatic half-wave plate. BS: 50-50 beam splitter. PCL: plano-convex lens. LED: 633
nm light-emitting diode. OBJ: objective. CMOS: CMOS camera. LPF: 785 nm long-pass
filter. OAP: off-axis parabolic mirror. CM: collimating mirror. GR: 600 grooves per mm
grating. CCD: liquid-nitrogen cooled CCD camera.

The excitation source is a single frequency 785 nm distributed Bragg reflector (DBR) laser
diode. Here the near infrared laser is used to minimize the parasitic heating. The diode is coupled
with a polarization-maintaining fiber (PMF) after which the laser light is collimated, cleaned
by a narrow bandpass filter, and expanded. The beam is then reflected by a dichroic mirror and
passes through a polarization beam splitter (PBS) and an achromatic half-wave plate (AHWP).
The PBS keeps the excitation and the back-scattered Raman light co-polarized and the AHWP
rotates this polarization direction relative to the sample. A NA= 0.95 near-infrared objective
is used to focus the excitation light onto the sample. A XYZ piezo stage is used to mount the
sample. The minimum step size and the bidirectional repeatability are both approximately 10
nm. The back-scattered Raman light is collected by the same objective and passes through the
AHWP, PBS, DM, a 785 nm longpass filter and a beam expander. The beam is then coupled into
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another PMF using an off-axis parabolic (OAP) mirror. The spectrum is analyzed by a dispersive
spectrometer with a grating of 600 grooves per mm and a liquid nitrogen-cooled CCD camera.
By inserting a beam splitter (BS) between the AWHP and the objective, an epi-illuminated
bright-field microscope can be enabled. A CMOS camera records the bright-field images which
are used to roughly locate the region of interest and the focal plane.

In Figs. 1(b)-1(d) , we present two test CMOS chip samples, named A and B. Sample A
and B are realized in Micron 220 nm DRAM [42] and GLOBALFOUNDARIES 55BCDLite,
respectivaly. As shown in Figs. 1(b) and 1(c), the layer stacks of A and B both consist of poly-Si,
crystalline Si, oxide and dielectric materials, and the test patterns are all in the poly-Si layer. The
main difference is that B is an intact CMOS chip with the poly-Si layer buried under the full
dielectric stack (≈ 6 µm) while A was back etched and bonded onto a handle wafer and thus
there is only 200-300 nm oxide on top of the poly-Si. Also, in A, the poly-Si is relatively far
away (>2 µm) from the Si handle while the poly-Si is only 300 nm away from the Si substrate in
B. The detailed fabrication process of A can be found in this paper. [42]

3. PSF measurements

We assume that the PSF has a Gaussian shape and the full-width half-maximum (FWHM) along
x and y are measured by knife edge measurements. Here the knife edge measurement refers to
scanning the focal spot across poly-Si edges along x and y with the assumption that the poly-Si
edges are ideally sharp. It is critical that the poly-Si layer is thin (≈ 100 nm) since the knife
edge measurements on thick materials can lead to severe errors. [36] In Figs. 2(a) and 2(b) ,
we plot the Si Raman peak intensity near 520 cm−1 versus positions on sample A. Here the
polarization is 45◦ relative to x. Note that the Raman signal is enhanced near the edge. Similar to
the literature, we also observe that the strength of the enhancement depends on the polarization
direction. (See Supplement 1) The PSF curve fitting with edge enhancement is more complicated
than the situation in which the ground truth signal is considered as a step function. Since the
localization is usually within tens of nm, we assume that the ground truth of the signal is step-like
plus a delta function at the edge. The fit FWHM of the PSF are 422.1± 24.7 nm and 393.9± 24.3
nm in x and y, respectively. (Figs. 2(a) and 2(b)) The mean and the standard deviation are from
20 repeated measurements at different locations of the edges. If one fits the experimental data
as a Gauss error function using the falling edge without considering edge enhancement, the fit
FWHM will be approximately 50 − 100 nm smaller. According to the discussion in Section 5,
this can introduce 10 − 20% errors in the final results.

The same measurement is performed on sample B. (Figs. 2(c) and 2(d)) Unlike sample A, the
(100) Si substrate of sample B is only 300 nm away from the poly-Si, which is the typical shallow
trench isolation (STI) thickness used in CMOS. Given the diffraction limit of the focal spot in z
is approximately 2 µm, the substrate has significant contribution to the Raman signal and the
contrast of the poly-Si layer is low even with edge enhancement. The contrast can be improved
by aligning the co-polarization direction along the [100] of the substrate Si. In principle, this
should eliminate the crystalline Si Raman associated with the optical modes at ≈ 520 cm−1 while
only slightly lower the poly-Si Raman because the orientation of the poly-Si is random. [39,40]
Here we align our laboratory coordinate, namely xy, with the [100] of the substrate and align the
polarization along x. The fit FWHM of the PSF are 409.3 ± 15.6 nm and 401.7 ± 7.2 nm in x and
y, respectively. Note that though the thickness of the dielectric stack is much thicker on sample
B, the PSF does not vary significantly compared with sample A.

https://doi.org/10.6084/m9.figshare.16847542
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Fig. 2. Measurement of the FWMHs of the PSF along (a) x and (b) y on sample A; (c) x
and (d) y on sample B. The focal spot is scanned across poly-Si edges at a step size of 30
nm. The Raman counts are integrated from 513 cm−1 to 527 cm−1. The laser power is
approximately 4 mW and 25 mW for sample A and B, respectively. The integration time at
each location is 0.5 s. The blue circles and the red curves are the experimental data and the
fitting curves, respectively. Each measurement is repeated 20 times at different locations
but here we only present four representative results. The mean and standard deviation are
present in the corresponding sub-figures. The inset plot in each sub-figure is the bright-field
image of the edge for the corresponding measurement. The red solid circle indicates the
position of the focal spot. The white arrow and the black double arrow indicate the scanning
direction and the polarization direction, respectively. In (c) and (d), the dashed black arrows
indicate the [100] of the substrate.
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4. Deconvolution algorithm

In this section, we present the deconvolution algorithm. Let D be the 3D (2D spatial plus 1D
spectral) data set of the hyperspectral Raman image. The Raman spectrum at each pixel is
first compressed into the relative chemical concentration using PCA. The deconvolution is then
performed on the image of the chemical concentration. As mentioned before, the observed image
is the convolution of the PSF and the ground truth. In this work, the deconvolved image f is
solved as an optimization problem with L1 regularization

f = argmin
f ′≥0

∥Hf ′ − g∥2
2 + λ

(︂
∥Dxf ′∥1 +

∥︁∥︁Dyf ′
∥︁∥︁

1

)︂
(1)

Here f and g are the column-major vectorization of the deconvolved and the raw images,
respectively. H is the blurring matrix determined by the PSF and the boundary conditions. λ is a
hyperparameter tuning the strength of the regularization. Dx and Dy are the derivative matrices
along x and y, respectively. ∥·∥i is the Li-norm. In this work, we use the Neumann boundary
condition to minimize the ringing effects at the boundaries.

The L1 regularization is solved iteratively with the split Bregman method. [43,44]

(Df , f ) = argmin
d,f ′≥0

∥Hf ′ − g∥2
2 + λ∥d∥1 + µ

l∥d − Df ′ − bk∥2
2 (2)

where D = [Dx, Dy]
T . µl>0, which is the barrier parameter controlling the convergence of d to

Df , is updated after several iterations. The update rule of µl is specified later. bk is chosen in each
iteration according to the Bergman distance. Equation (2) can be split and solved iteratively as

f k+1 = argmin
f ′≥0

∥Hf ′ − g∥2
2 + µ

l ∥︁∥︁dk − Df ′ − bk∥︁∥︁2
2 (3)

dk+1 = argmin
d′

∥d′∥1 +
µl

λ

∥︁∥︁d′ − Df k+1 − bk∥︁∥︁2
2 (4)

and bk is updated as
bk+1 = bk + Df k+1 − dk+1 (5)

Equation (4) has a closed form solution

dk+1
i = sign

(︂ [︁
Df k+1 + bk]︁

i

)︂
max

(︃ [︁
Df k+1 + bk]︁

i −
λ

µl , 0
)︃

(6)

Equation (3) is standard quadratic programming with non-negativity constraint and it is the
most time-consuming sub-problem. A simple and efficient algorithm to solve Eq. (3) can be found
in this report. [45] However, in order to incorporate the fast cosine transform, the non-negativity
constraint is solved iteratively using the quadratic penalty method [46,47] as

f k+1 = argmin
f ′

∥Hf ′ − g∥2
2 + µ

l ∥︁∥︁dk − Df ′ − bk∥︁∥︁2
2 + η

l ∥︁∥︁f ′ − pk∥︁∥︁2
2 (7)

pk+1 = max
(︂
f k+1, 0

)︂
(8)

where ηl>0 is the barrier parameter controlling the convergence of f to p.
Equation (7) is now a quadratic programming problem without constraint and has a closed

form solution

f k+1 =
(︂
HTH + µlDTD + ηlI

)︂−1 (︂
HTg + µlDT

(︂
bk − dk

)︂
+ ηlpk

)︂
(9)

Since the coefficient matrix is Hermitian and positive definite, Eq. (9) can be solved first
using the Cholesky decomposition with O(N3) complexity and then the forward and backward
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substitutions with O(N2) complexity. [48] Here N is the total pixel number of the observed image.
Without updating µl and ηl, the Cholesky decomposition only needs to be performed once during
the iterations.

As pointed out by Ng et al., given that both the PSF and the boundary conditions have
mirror symmetry with respect to x and y, H is a Toeplitz-plus-Hankel block matrix and can be
diagonalized by the tensor product of two cosine transform matrices. [49]

H = (C ⊗ C)T Λ (C ⊗ C) (10)

Here ⊗ represents the tensor product and C is the 1D cosine transform matrix

Cij =

√︃
2 − δi1

n
cos

(︃
(i − 1)(2j − 1)π

2N

)︃
(11)

with δ being the Kronecker delta. Λ is a diagonal matrix which can be computed using the
standard basis e1 as

Λi,i =
[(C ⊗ C)e1]i
[(C ⊗ C)He1]i

(12)

Note that the multiplication of (C ⊗ C) and a vector can be computed using the 2D fast cosine
transform with O(N log N). Also note that though Dx and Dy do not have the mirror symmetry,
DTD = DT

x Dx + DT
y Dy does have the symmetry and thus

DTD = (C ⊗ C)T Γ (C ⊗ C) (13)

where Γ is diagonal and can be computed in the same way as Eq. (12).

Γi,i =
[(C ⊗ C)e1]i

[(C ⊗ C)DTDe1]i
(14)

Equation (9) can then be written as

f k+1 = (C ⊗ C)T
(︂
Λ

2 + µl
Γ + ηlI

)︂−1
(C ⊗ C)

(︂
HTg + µlDT

(︂
bk − dk

)︂
+ ηlpk

)︂
(15)

Here Λ, Γ and HTg only need to be computed once with O(N log N). D is sparse and thus
DT (︁

bk − dk)︁ can be computed in O(N). In total, Eq. (15) has computational complexity of
O(N log N). This is a significant speed-up compared with O(N3).

After the convergence of f , the barrier parameter is updated as

µl+1 = µl(1 + α) (16)

ηl+1 = ηl(1 + β) (17)

with α>0, β>0. The iteration continues until f ≥ 0 is satisfied and d converges to Df .
The deconvolution algorithm can be summarized in Alg. 1. The parameters used in this report

are µ0 = η0 = 10−2, α = β = 0.5, ϵ0 = 10−3, ϵd = ϵf = 10−4. Turning these parameters changes
the rate of convergence, but does not have significant effects on the deconvolution results. The
selection of λ is discussed in the next section.

Finally, we point out that the fast cosine transform is used here because of the Neumann
boundary condition. If periodic boundary conditions or anti-reflective boundary conditions are
used, one can use the fast Fourier transform and the fast sine transform, respectively. [50] All the
discussions above are still valid.



Research Article Vol. 29, No. 23 / 8 Nov 2021 / Optics Express 38035

Algorithm 1 Deconvolution algorithm
Input data: D, g, H
Input parameters: λ, µ0, η0, α, β , ϵ0, ϵf , ϵd >0, f 0 = g, d0 = 0, b0 = 0, p0 = 0
Output: f

1: Compute Λ, Γ, HTg ▷ Eq. 12,14
2: while min(f )< − ϵ0 or ∥dk−Df k∥2

∥Df k∥2
>ϵd do

3: while ∥f k+1−f k∥2
∥f k∥2

>ϵf do
4: Update f ▷ Eq. 15
5: Update d ▷ Eq. 4
6: Update b ▷ Eq. 5
7: end while
8: Update µ ▷ Eq. 16
9: Update η ▷ Eq. 17

10: end while
11: return f

5. Deconvulution results and discussion

In this section, we present our deconvolution results on CMOS samples. The pipeline of our
work can be summarized as follows. First, we approximate the PSF using the fitting approach as
mentioned in Section 3. Then we perform deconvolution on a training pattern using the method
in Section 4 with varying regularization parameter λ. In this step, the optimal λ is determined
by matching the deconvolution results with the ground truth. Finally, with this trained λ, we
perform deconvolution on test patterns different from the training pattern and evaluate the results.
Note that both the PSF and λ are determined by experiments independent from the test patterns.
Over-fitting is avoided in this pipeline.

Our training pattern is a 2D poly-Si grid on sample A. The bright-field image of this pattern
is similar with the one in Fig. 1(d). The grid has a periodicity of 930 nm and the bar width
is approximately 325 nm (35% duty cycle). The Raman image was acquired by scanning the
sample at a step size of 50 nm and the total pixel number is 61 × 61 (3 × 3 µm2 field of view).
Here the polarization is 45◦ relative to x. In Fig. 3(a), we compare the first loadings and a
representative raw spectrum normalized by its first score. Given the two curves are approximately
identical, we conclude that the chemical concentrations and the Raman spectra of the sample
can be approximated by the first score and the associated loadings, respectively. Some authors
suggest the use of MCR-ALS in this step, [30] but in our work we notice that the results have
no significant difference between using PCA and MCR-ALS. In Fig. 3(b), the raw image of
the relative chemical concentration is present. The image is vectorized as g in Eq. (1) and is
normalized by the mean value ḡ of all the pixels. This normalization is critical since the raw
Raman counts from different experiments can vary significantly. In Fig. 3(c), we present the
ground truth of the 2D grid. Here we choose the shift in x and y to approximately match Fig. 3(b).
It can be observed that the raw image is blurred and the bar width is not resolved.

In Fig. 3(d)-(f), we present the deconvolution results of Fig. 3(b) using Eq. (1) with various
λs. As expected, L1 regularization preserves edges and generates images with piece-wise flat
regions. We observe that the deconvoluted images capture the shape and the periodicity of the
grid. Each individual bar can also be resolved since the chemical concentration vanishes between
adjacent bars. As λ increases, the bar shape becomes wider and shorter. This is expected since
the penalty on the derivative becomes larger. This is clear in Figs. 3(g) and 3(h) where we plot



Research Article Vol. 29, No. 23 / 8 Nov 2021 / Optics Express 38036

Fig. 3. Deconvolution results of the training pattern. (a) The first loadings from PCA and a
raw spectrum normalized by the corresponding score. (b) The raw data and (c) the ground
truth of the relative chemical concentration image. In (b) and (c), the value at each pixel
is normalized by the mean of the whole image. (d)-(f) The deconvolution results of (b)
with various λs without further normalization. (g)(h) Data on the dashed white lines along
(g) x and (h) y in (b)-(f). (i) Fill factor versus λ. FFGT indicates the ground truth and λ∗
indicates the optimal λ. The deconvolution result corresponding to λ∗ is present in (e). In
this experiment, the laser power is approximately 4 mW and the integration time is 0.5 s at
each pixel. The total pixel number is 61 × 61 and the pixel size is 50 nm ×50 nm.

the data slices on the white dashed lines along x and y respectively. In the Supplement 1, we also
present the situations that the deconvolution fails when λ is too small or too large.

To quantify the error of the deconvolution, we compare the fill factor (FF) of the deconvolved
image with that of the ground truth image. Here the FF is defined as the proportion of the poly-Si
area over the total area. For a perfect 2D grid, the ground truth of FF is

FFGT = 1 −

(︃
p − w

p

)︃2
= 1 − (1 − d)2 (18)

where p, w are the periodicity and the width, respectively. d = w
p is the duty cycle of the grid bar.

In the deconvoluted image, FF is approximated by counting the pixel number with the chemical

https://doi.org/10.6084/m9.figshare.16847542
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concentration higher than the averaged value

FF ≈
# of pixels with f > f̄

total # of pixels
(19)

where f is the relative chemical concentration in Eq. (1) and f̄ is the mean value of f . In our
results, we observe that f̄ ≈ ḡ = 1. This is because that g is normalized by ḡ and convolution
does not change the mean value. In Fig. 3(i), we present FF of the decovoluted image with
varying λ. It can be observed that in general FF increases with λ. This is consistent with
Figs. 3(g) and 3(h) in which the bar width increases with λ. Given FFGT ≈ 0.58, the optimal
λ∗ ≈ 0.0048. The deconvoluted image corresponding to λ∗ is Fig. 3(e). Though the FF is correct,
it is also worthwhile evaluating the error of the deconvolved feature size (bar width) and the
poly-Si chemical concentration of the bar in Fig. 3(e). Here we approximate the bar width by
counting pixels with f>f̄ in the data slices in Figs. 3(g) and 3(h). The averaged bar width is
340 ± 42 nm, which is approximately 5% larger than the ground truth (325 mm). The poly-Si
chemical concentration is approximated by the average of the f with f>f̄ (poly-Si region), which
is 1.63± 0.33. Here the ground truth is 1/FFGT ≈ 1.73. The means of both the bar width and the
chemical concentration are relatively closed to the ground truth but the standard deviations are
approximately 15%− 20%. The relatively large standard deviation is likely from the imperfection
of the sample and is also a side effect of the edge enhancement effect. For example, In Fig. 3(b),
g has different values near the centers of different bars. The difference can be amplified by
the deconvolution and reflected in f . Also, as we pointed out in the PSF measurements, the
polarized Raman intensity will be enhanced by the local geometry. Both factors will contribute
to the variance from the ground truth in which we assume perfect geometry and neglect the local
effects. Nevertheless, by choosing the optimal λ based on FF, the deconvolution still generates
reasonably precise feature sizes and relative chemical concentrations.

However, it is unlikely that one can determine the optimal λ a priori because the ground truth
is usually unknown. In these situations, the optimal selection of the regularization parameters has
been discussed by many authors. [51–53] In our work, we train λ on a known pattern and present
that this optimal parameter can be used for the deconvolution on unknown patterns. Specifically,
we use the pattern in Fig. 3 as the training pattern and set λ = 0.0048. The first test pattern is also
a 2D poly-Si grid on sample A with smaller features: p = 760 nm, w = 230 nm (d = 0.3). The
raw image, the ground truth, and the deconvolution with λ = 0.0048 are present in Fig. 4(a)-(c).
We also present the data slices on the dashed white lines in Fig. 4(d) and (e). It can be observed
that the bars are resolved in Fig. 4(c)-(e). The average bar width in Figs. 4(d) and 4(e) is 207± 35
nm (ground truth 230 nm). The averaged relative chemical concentration of the poly-Si region in
Fig. 4(c) is 1.96± 0.43 (ground truth 1/FF = 1.96 ). All the values are closed to the ground truth
(≈ 10% mean error). The relative large standard derivations, as discussed, are mainly due to the
inherent imperfection of the measurements. We emphasize that here the deconvolution does not
require information on the unknown test pattern.

The second test pattern is on sample B, which is a full-stack CMOS chip. The detailed difference
of the two samples are mentioned in the PSF measurement section. Here the polarization is
along the Si <100> of the substrate (x of the image) to minimize the background Raman signal.
The laser power is approximately 6× higher than the previous experiments. The test pattern is a
1D grating with p ≈ 650 nm, w ≈ 275 nm (d ≈ 0.42). The optical image is present in Fig. 1(e).
Similar to Fig. 4, the raw image, the ground truth image, the deconvolution with the trained
λ = 0.0048, and the data slices are present in Fig. 5. Note that for a 1D grating, FFGT = d. We
find that the averaged bar width is 291 ± 38 nm (ground truth 275 nm). Here the average value is
from all the 61 y slices. The averaged poly-Si chemical concentration in Fig. 5(c) is 2.10 ± 0.31
(ground truth 2.37). FF = 0.044 (ground truth 0.042). The errors are still approximately 10%.
This experiment shows that the deconvolution on Raman images can be applied to intact CMOS
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Fig. 4. Deconvolution results of the test pattern on sample A. (a) The raw data and (b) the
ground truth of the relative chemical concentration image. (c) The deconvolution results of
(a) with the trained λ = 0.0048. (d)(e) Data on the dashed white lines along (g) x and (h) y in
(a)-(c). In this experiment, the laser power is approximately 4 mW and the integration time
is 0.5 s at each pixel. The total pixel number is 61 × 61 and the pixel size is 50 nm ×50 nm.

samples and that the training process can be performed on a separate sample with different
experiment conditions.

We now consider the dependence of the deconvolution results on the PSF. Here we intentionally
change the size of the PSF to introduce systematic errors. The Raman image of sample B is used
as the example. We set the FWHM of the PSF as

FWHM′
x/y = k FWHMB

x/y (20)

where FWHMB
x/y is the mean measured FWHM on sample B. In Figs. 6(a)-6(d), we present the

deconvoluted images and the data slice with k = 0.8, 1.0, and 1.2 and λ = 0.0048. We observe
that if the PSF is small compared to k = 1 the contrast is lower but the feature size (bar width)
does not vary significantly. Meanwhile, when the PSF is larger than k = 1, the feature size
shrinks and the contrast increases simultaneously. In Figs. 6(e) and 6(f), we can verify these
observation by sweeping k and plotting the relative chemical concentrations and the bar width.
This trend can be understood by considering that the mean of the image does not change after
deconvolution. First, the PSF size determines the strength of the blurring effect. Specifically,
when the PSF is small the blurring effect is weak, and thus the deconvoled image is close to the
raw image. When the PSF is large, the deconvoled image has to be sparse and compact to match
the strong blurring. Therefore, with the same mean value, the contrast increases with the PSF
size. Second, the asymmetrical behavior is a result of the non-negativity constraint. In Fig. 6(e),
when k<1, as k increases, the relative chemical concentration increases in the poly-Si area and
decreases in the no-poly-Si area. The magnitudes are close and thus the bar width does not vary
significantly. When k>1, the relative chemical concentration in the no-poly-Si area drops to
zero and cannot decrease anymore. The bar width then starts to decrease to compensate for the
increasing chemical concentration in the poly-Si area. Here we do not discuss FF because the
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Fig. 5. Deconvolution results of the test pattern on sample B. (a) The raw data and (b) the
ground truth of the relative chemical concentration image. (c) The deconvolution results of
(a) with the trained λ = 0.0048. (d)(e) Data on the dashed white lines along (g) x and (h) y in
(a)-(c). In this experiment, the laser power is approximately 25 mW and the integration time
is 0.5 s at each pixel. The total pixel number is 61 × 61 and the pixel size is 50 nm ×50 nm.

features of the 1D grating are relatively simple and the FF versus k curve is almost identical to
the bar width curve with a linear scaling factor.

In our experiment, the PSF measurement is relatievly precise with the standard deviation
≈ 6% on sample A and ≈ 4% on sample B. According to Figs. 6(e) and 6(f), the measurement
error that propagates into the deconvolued image should be <10%, which is close to the error
of the deconvolution itself. Meanwhile, the systematic error of the PSF (non-Gaussian focus,
non-perfect poly-Si edge, etc.) is relatively difficult to calibrate. The systematic error may
contribute to the deviation of the deconvolution with k = 1 from the ground truth in Figs. 6(e)
and 6(f). We minimize this error by measuring the PSF using thin (≈ 100 nm) poly-Si edge-like
patterns on the same chips of the test patterns.

Finally, we test the computational speed-up of Alg. 1 compared with other methods. We use
the same data set and the parameters in Fig. 4. The raw image is truncated into multiple sizes to
show the scaling of the running time with the problem size. Two other algorithms are used for
comparison. In the first algorithm, Eq. (9) is solved using the Cholesky decomposition. The
algorithm is similar to Alg. 1, with the Cholesky decomposition computed in each outer loop and
the forward and backward substitutions computed in each inner loop. In the second algorithm,
Eq. (3) is directly solved using the quadprog function in the Optimization Toolbox of MATLAB.
The results are present in Fig. 7, where we also plot the acquisition time of the truncated images.
It can be observed that Alg. 1 is 1 − 2 orders of magnitude faster than the Cholesky method and
2 − 3 orders of magnitude faster than quadprog. The gaps keep increasing as the problem size
increases. Also Alg. 1 is more that two orders of magnitude faster than the acquisition time
and thus the computational overhead is negligible. Meanwhile, the running time of the other
two methods will take 5% − 100% of the acquisition time. These observations clearly show the
superior performance of Alg. 1. It can be expected that the advantage of Alg. 1 would be even
more significant with problems with larger sizes.
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Fig. 6. Deconvolution results of the 1D grating pattern (Fig. 5(a)) with intentionally varied
PSF sizes. (a)-(c) The deconvolution results with the trained λ = 0.0048 and k = 0.8, 1.0
and 1.2. (d) Data on the dashed white lines in (a)-(c). (e) The averaged relative chemical
concentration in the poly-Si area and the no-poly-Si area versus k. (f) The averaged bar width
versus k. The poly-Si area includes the pixels with f>f̄ , and the no-poly-Si area includes the
other pixels. The averaged bar width is evaluated by the 61 data slices along y.

Fig. 7. Comparison of the running time scaling of multiple algorithms. The dataset is the
truncated images of Fig. 4(a) with the total pixel number 30 × 30, 40 × 40, 50 × 50, and
60 × 60. The parameters are consistent with Fig. 4. The algorithms are implemented in
MATLAB R2021a using a PC with Intel Xeon CPU E5-1620 v2 @ 3.70GHz and 80GB
RAM.
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6. Conclusion

In this work, we present our work of computational polarized Raman microscopy with sub-
diffraction-limit resolution on two CMOS chips. The polarization configuration is used to
eliminate the background Raman signal from the substrates as well as to induce the edge
enhancement effect to improve the image contrast. We first determine the PSF with the existence
of edge enhancement. The hyperspectral image is then compressed into the image of chemical
concentrations using PCA. With the compressed image, the deconvolution is formulated as a
regularized optimization problem and is solved based on the fast cosine transform with O(N log N)

complexity. The dependence of the decovolution results on the regularization parameter is
investigated on a pattern with 325 nm features. We show that if the raw image is normalized by
the mean value, one can train the regularization parameter on a known pattern and apply it to
unknown patterns even if the physical properties and the experiment conditions are different. In
this way, we can resolve 230 nm features on a back-etched CMOS sample and 275 nm features on
an intact CMOS sample. These spatial resolutions are approximately 50%−70% of the diffraction
limit. The errors of the feature size and the relative chemical concentration are approximately
10%. Some portion of these errors might come from the imperfection of the sample and the side
effect of edge enhancement. We also investigate how the size of the PSF affects the deconvolution
results and confirm that the error propagation from the PSF measurement is less than 10%. At the
end, we benchmark our algorithm and show significant speed-up compared to two other methods.

It is worthwhile to point out that we use the prior information of the feature orientations when
choosing the polarization direction. If this information is unknown or the local feature orientation
is disordered, one can perform two scans with orthogonal polarization and the two images should
have complementary contrast enhancement. (For example, see Fig. S1 in the Supplement 1.)
If the acquisition time is not a constraint, one can generate images with multiple polarization
angles from 0 to 90◦. This set of images can be averaged to achieve enhancement of features
in different directions. If the scale of the disordered sample is much smaller than the PSF, the
contrast enhancement may be difficult to observe since the signal is averaged over the PSF. One
may still be able to retrieve the map of the local feature orientation by deconvolution. However,
in this situation, the local feature orientation is a property to resolve rather than a property that
can be utilized.

In conclusion, we set up a complete pipeline for the deconvolution with polarized Raman
microscopy. This pipeline includes the PSF determination with the existence of edge enhancement,
independent parameter training, and result testing. The performance of this approach is evaluated
by discussing the parameter selection and quantifying the errors of various properties. In the future,
we expect researchers to use our method on more complicated samples, for example, compounds
with multiple chemicals. Since our approach has minimal limitation on the instruments, it is
promising to combine it with other techniques such as ISM, SRS and CARS. We also hope that
the discussion on the size of the PSF can contribute to the development of algorithms which
require even less prior information, such as blind deconvolution. [53]
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