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Precise knowledge of a laser’s wavelength is crucial for ap-
plications from spectroscopy to telecommunications. Here,
we present a wavemeter that operates on the Talbot effect.
Tone parameter extraction algorithms are used to retrieve
the frequency of the periodic signal obtained in the sampled
Talbot interferogram. Theoretical performance analysis
based on the Cramér–Rao lower bound as well as experi-
mental results are presented and discussed. With this
scheme, we experimentally demonstrate a compact and
high-precision wavemeter with below 10 pm single-shot
estimation uncertainty under the 3–σ criterion around
780 nm. © 2019 Optical Society of America

https://doi.org/10.1364/OL.44.004187

The Talbot effect refers to the self-imaging phenomenon
observed with coherent light after passing through periodic
structures such as diffraction gratings [1]. Owing to its interfero-
metric nature with an invertible spatio-spectral response, it has
been previously proposed as the building component for real-
izing spectrometers [2,3]. With modern technological advances
in CCD and complementary metal–oxide–semiconductor
(CMOS) image sensors, sensor pixel sizes have reached a point
where direct sampling of the Talbot pattern is achievable with-
out any external imaging optics [4,5]. In addition, operating the
spectrometer configuration in the non-paraxial regime with a
tilted image sensor allows full-frame interferogram capture with-
out any moving parts, as strong diffractions in the non-paraxial
regime confine the Talbot region to be within several milli-
meters after the diffraction grating. This creates a simple and
compact spectrometer configuration, while still maintaining
a competitive performance in terms of spectral resolution,
bandwidth, and throughput [4].

Aside from spectrometers designed for general spectroscopy
(such as those designed for broadband light sources), more
specialized wavelength meters play an important role in appli-
cations such as spectroscopy of atomic systems. Also known as
wavemeters, they are specifically designed for measuring the
wavelength of coherent laser beams. A wavemeter usually
has resolution requirements much higher than that of a typical
spectrometer and is generally built through an interferometric
geometry. One of the key factors to a good wavemeter

performance is to ensure low estimation uncertainty across
measurements. This is referred to as high precision in our text.
The commercial landscape for wavemeters has been dominated
by two approaches: the scanning Michelson interferometer and
the static Fizeau interferometer. The highest-precision wave-
meters are typically based on the Fizeau geometry [6]. In ad-
dition, it has better performance against power fluctuations and
side modes due to the static nature. Michelson interferometer-
based wavemeters, on the other hand, can cover longer wave-
length regimes due to the fact that only a single detection
element is required [7]. Apart from these conventional
approaches, in recent years, new concepts for realizing compu-
tational devices and instruments have also resulted in a number
of compact, high-precision, and broad-bandwidth wavemeters
[8–10].

As an extension to our previous work on compact Talbot
spectrometers [4,5], here we utilize the Talbot effect and signal
processing for realizing wavemeters, as shown in Fig. 1. With P
as the grating period and λ as the incidence light wavelength,
the Talbot distance zT , over which the self-images repeat, is
given as

zT � λ

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
λ
P

�
2

q : (1)

This was first discovered in 1836 by Henry Fox Talbot [1] and
later analyzed by Lord Rayleigh [11]. The Talbot periodicity in
the depth (z) direction provides a spatio-spectral mapping that
is interferometric in nature. As shown in Figs. 1(a) and 1(b), a
tilted image sensor can be placed after the grating to sample the
Talbot interferogram across depths. Afterwards, a straightfor-
ward Fourier transform can be used to reconstruct the spectrum
of the light source [2–4].

For coherent light signals such as laser sources, the sampled
Talbot interferogram rows (across the depth dimension) essen-
tially contain periodic signals where the spatial periodicity cor-
responds to the laser wavelength, according to Eq. (1).
Extracting the frequency (and possibly amplitude and phase)
information for a periodic signal, which some term as the tone
parameter estimation problem [12], can be achieved with pre-
cisions much higher than those obtained from direct FFT of the
spectrogram [12]. This problem has a long history in the signal
processing community with applications ranging from radar
and sonar systems [13,14], audio and acoustics [15,16],
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astronomy [17], and many more. As a result, many algorithms
such as the maximum likelihood estimation [12], multiple sig-
nal classification (MUSIC) [13], estimation of signal parame-
ters via rotational invariance technique (ESPRIT) [14], and
others [18] have been developed and applied to solve this
problem with extremely high precision.

While direct FFT has been used for spectrum retrieval with
the Talbot spectrometer in our previous work, for laser wave-
length estimation, similar tone parameter extraction ideas can
be applied to achieve much higher laser wavelength estimation
precisions. This is illustrated in Fig. 2, which shows example
plots for reconstructed spectra for stepping laser wavelengths
across a small wavelength range. Figure 2(a) uses direct FFT
for spectral processing, whereas Fig. 2(b) zero-pads the inter-
ferogram rows to augment the array sizes by around four times
prior to the FFT operation for precision enhancement. As can
be seen from the figure, with zero-padding, much finer inter-
polated spectral shapes can be achieved, resulting in much more
precise center frequency estimation than that from the direct
FFT estimation.

For real sinusoidal parameter estimation, assume that the
underlying periodic signal y�n� is

y�n� � A cos�2πf 0Δn� ϕ� (2)

for n � 0, 1, 2,…,N − 1, where A is the amplitude for the
periodic signal, f 0 is its frequency, Δ is the sampling interval,
and ϕ is the phase. The observed discrete noisy signal x�n� is

x�n� � y�n� � w�n�, (3)

where w�n� is white Gaussian noise with variance σ2. The
Cramér–Rao lower bound (CRLB), which is the theoretical
lowest error bound achievable with an unbiased estimator,
for the various parameters in the model is [19]

var�Â� ≥ 2σ2

N
, (4)

var�f̂ 0� ≥
6σ2

π2A2Δ2N �N 2 − 1� , (5)

var�ϕ̂� ≥ 4�2N − 1�σ2
A2N �N � 1� : (6)

Here, ·̂ refers to the estimator for the corresponding parameter.
The most relevant parameter for our application is var�f̂ 0�. The
model SNR, which is usually defined as the ratio between the
variance of the signal and the variance of the noise, is

SNR � var�y�
var�w� �

A2

2σ2
: (7)

Rewriting the CRLB for frequency estimation, we have

var�f̂ 0� ≥
3

π2SNRΔ2N �N 2 − 1� �
3N �δf �2

π2SNR�N 2 − 1� : (8)

Here, δf is the FFT-defined frequency-domain spacing. The
standard deviation for the frequency estimation error can
therefore be written as

std�f̂ 0� ⪆
δfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3SNRN
p : (9)

Equation (9) can be used to estimate the theoretical wavelength
precision bound for a Talbot wavemeter. Taking the Aptina
MT9J003 image sensor as an example, which has dimensions
of 3856 × 2764, a moderate experimental SNR of ≈0.5 for a
single-row interferogram signal (across the larger dimension) is
generally achievable in our experiments. This corresponds to a
3–σ estimation precision of ≈4% of the FFT bin size δf . If
ensemble estimation such as mean aggregation based on the
row-wise estimations is performed, a further reduction offfiffiffiffiffi
M

p
times in estimation uncertainty can be achieved for per-

fect and uniform plane wave incidence sources, whereM is the
number of rows. With δf below 1 nm for most geometries
tested under optical wavelengths in our configurations [4], this
means that single-shot sub-picometer precision based on the
3–σ criterion is possible with image sensors like the Aptina
MT9J003. In practice, issues such as wavefront aberration
can introduce additional estimation bias and uncertainty, re-
sulting in deviation in the actual system performance from
the theoretical estimation bound. However, the analysis here
can still provide insights on the system performance limits
and help identify sources for improvements.

Fig. 1. (a) Illustration of the Talbot interferogram sampling with a
tilted image sensor in close proximity to the grating. (b) The image
sensor is placed inside the Talbot region behind the diffraction grating.
(c) The compact Talbot wavemeter.

Fig. 2. (a) Reconstructed spectra using direct FFT for stepping laser
wavelengths with a tunable external cavity diode laser. (b) Reconstructed
spectra using FFT with prior zero-padding for the spectral sources
in (a).
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Experiments to explore the performance limits for the
Talbot wavemeter and signal processing for wavelength estima-
tion were carried out. A compact Talbot wavemeter setup using
three-dimensional (3D) printed parts and Thorlabs compo-
nents similar to the one shown in Fig. 1(c) were used for device
characterization. A tunable single-frequency Ti:sapphire laser
(SolsTiS, M-Squared Lasers) was used as the light source.
A high-resolution wavemeter (HighFinesse WS7) was used to
provide the reference wavelength measurements with sub-
picometer accuracies. A single-mode optical fiber was used for
light delivery. A fiber collimation lens and a beam expander
were used to fill the image sensor area. The Talbot system con-
sisted of an Aptina MT9J003 sensor (6.440 mm × 4.616 mm
active area) and a fused silica transmission grating (14 mm ×
12 mm active area) with 1.035 μm grating pitch size. The dif-
fraction grating has comparable diffraction efficiencies for the
TE and TM modes, which should minimize the influence of
polarization on the wavemeter. The grating–sensor tilt angle
was 20°. The laser source was tuned across pre-defined wave-
length ranges. For each wavelength, consecutive and indepen-
dent images were obtained for estimation variance analysis.

We first show the broad bandwidth operation with the
Talbot wavemeter in Fig. 3(a). The Ti:sapphire source was
tuned from 710–990 nm in steps of 10 nm, and the corre-
sponding FFT-reconstructed spectral peaks are shown in
Fig. 3(a). In theory, the Talbot wavemeter is able to cover
the entire optical wavelength range as long as the sensor pixel
remains responsive. In practice, our experimental demonstra-
tion is limited by the source availability. Due to the finite ex-
perimental control precision for the light incidence angle and
the grating–sensor tilt angle, a direct wavelength estimation
based on the sampled interferogram according to Eq. (1) does
not match exactly with the actual wavelength. As a result, a
linear calibration based on the least squares fitting between
the calculated wavelengths and the actual wavelengths was
carried out similar to [4].

To estimate the wavelength from the Talbot interferogram
image with high precision, row-wise wavelength estimation was
carried out for all image rows across which depth samplings
were performed. Two algorithms have been extensively ex-
plored. The first one was an algorithm based on peak localiza-
tion with zero-padded FFT [15]. The interferogram rows were
first zero-padded to augment the array dimension by one to two
orders of magnitude. FFT was then applied on the signal for
spectrum retrieval. Afterwards, the maximum of the spectral
peak was identified, and a parabolic approximation based on
this point and its adjacent points was used for peak maximum
localization. The second one was the MUSIC algorithm [13],
which is an eigenspace method to identify a known number of
sinusoidal signals in the presence of Gaussian white noise. It is
considered by many as one of the most promising algorithms
for frequency estimation tasks [20]. For this algorithm, we used
the MATLAB implementation (rootmusic) for our numerical
processing. A bandpass filter was applied prior to the MUSIC
algorithm to filter out unwanted signal interferences, such as
the reflection from the glass window over the image sensor.
Figure 3(b) shows the empirical probability density function
(PDF) for row-wise wavelength estimations across the captured
image with the MUSIC algorithm at 780 nm. As mentioned in
the previous text, mean aggregation was then applied to reduce
the estimation uncertainty.

With the above approaches, both algorithms were able to
provide accurate wavelength estimations much better than
those obtained through direct FFT inversion. To quantify
the estimation uncertainty, which defines the precision achiev-
able with our approach, we used 10 different wavelength mea-
surements around 780 nm, each with 10 consecutive and
independent acquisitions, to calculate the mean estimator stan-
dard deviation. As shown in Table 1, the final single-shot mean
3–σ uncertainty was ≈9.8 pm for the FFT peak localization
algorithm and ≈8.8 pm for the MUSIC algorithm. Both algo-
rithms were able to provide sub-10-pm single-shot estimation
precision based on the 3–σ criterion, with the MUSIC
algorithm having a slightly more consistent estimation.
Figure 3(c) shows wavelength estimations with the FFT peak
localization algorithm for steps of 100 pm with 3–σ as the
error bar. A linear wavelength calibration similar to the one

Fig. 3. (a) FFT-reconstructed spectral peaks for a single-frequency
Ti:sapphire source tuned from 710–990 nm in steps of 10 nm.
(b) The empirical PDF for row-wise wavelength estimations across
the captured image at 780 nm. (c) Wavelength estimations for a laser
source tuned with 100 pm step sizes. The algorithm used here was the
FFT peak localization method. The dots in the plots are the means from
10 consecutive and independent acquisitions. The error bars represent
the 3–σ uncertainties from the 10 measurements. (d) Mean estimation
standard deviation as a function of the number of averaging rows for the
MUSIC algorithm. The standard deviations were calculated from 100
acquisitions with 10 different wavelength points around 780 nm.
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applied in Fig. 3(a) was used for this wavelength range prior to
the plot.

The effect of mean aggregation across different interferogram
rows is investigated next. This is shown in Fig. 3(d), where we
varied the number of averaging rows from 100–2700 in steps of
100 with the MUSIC algorithm. As can be seen from the plot,
mean aggregation across the interferogram rows can enhance the
estimation precision considerably. The most significant improve-
ment comes from the initial aggregation stage, which is expected
for uncertainty reduction with averaging. The CRLB suggests a
sub-picometer single-shot estimation standard deviation with
full-mean aggregation. The performance gap from theory is likely
caused by the fact that, in our experiment, aberrations with the
collimation setup as well as the non-ideal pixel sampling, either
due to the oblique incidence or the micro-lens array, can intro-
duce phase errors in our interferogram signal. This causes
Fourier-domain spectral peak distortions as well as peak position
misalignments across different interferogram rows, weakening
the efficacy of mean aggregation in terms of uncertainty reduc-
tion. This can likely be improved by better collimation for aber-
ration reduction or by using algorithms that can correct
systematic phase errors during estimation [21].

While the MUSIC algorithm yielded better precision in
terms of estimation consistency, a significant advantage for
the FFT peak localization algorithm is its computational speed.
While extra memory is needed for storing the zero-padded image,
row-wise FFT across a two-dimensional image has vectorized and
well-optimized code executions [22]. The remaining operations
generally have linear time complexities and are easily vectorized.
As discussed earlier, aggregating row-wise estimation results is
one of the keys to achieving an accurate final estimation, therefore
being able to perform fast and parallel frequency estimations across
several thousand interferogram rows, which can be extremely ad-
vantageous. In general, our experiments suggested at least ≈20
times faster computational speed for the FFT localization algorithm
as compared to the MATLAB-provided MUSIC algorithm. In ad-
dition, the MUSIC algorithm requires the number of existing peri-
odic signals to be known in advance, which would need more care
when multiple sources exit. This aspect can be handled more easily
with the FFT localization algorithm, as one can incorporate a heu-
ristic approach for peak identification and thresholding within the
FFT localization steps in a straightforward manner.

The approach presented in this work provides an attractive op-
tion for realizing compact and high-precision wavemeters. While
recent computational wavemeter approaches have demonstrated
impressive size, resolution, and bandwidth metrics [8,9], these ap-
proaches generally require a full-spectrum calibration process to
explicitly construct the system transfer matrix. This may be difficult
to have in practical use cases. On the other hand, the interferometric
nature of the Talbot phenomenon presents recorded signals in ana-
lytically tractable periodic forms. This can potentially eliminate the
need for a full-spectrum calibration and can leverage many canoni-
cal signal processing algorithms for speedy and accurate parameter
estimation. Compared to the Fizeau or Michelson interferometer-
based wavemeters, the static and more compact Talbot geometry

proposed in our work is simple to realize with inexpensive optical
components such as diffraction gratings and CMOS image sensors.
As a result, it can be a preferred choice where portability, speed, and
cost are the constraining factors in the application.

As a non-negligible performance gap exists in terms of the ac-
tual wavelength estimation precision and the theoretical bound,
some improvements can be made. For example, one can perform
better wavefront shaping to improve the estimation consistency
across the image sensor. In addition, while a high absolute accu-
racy is shown in Fig. 3(c) across a narrow wavelength range, a
precise geometry and robust calibration scheme for the Talbot
wavemeter has yet to be performed over a wide wavelength range.
As an example, a quadratic wavelength calibration across a
100 nm wavelength span around 780 nm yielded an absolute
wavelength accuracy error of around 40 pm with the current con-
figuration. While this is largely a solved technical issue given the
industry success of interferometer-based wavemeters, improving
the Talbot wavemeter for practical usage in this regard may still
take several design iterations and adjustments. Last, but not least,
improving the sampled Talbot interferogram visibility will lead to
directly increased SNR. This can be achieved through experi-
menting with new sensor–grating combinations.
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