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Abstract: In present literature on integrated modulation and filtering, limitations in the extinction
ratio are dominantly attributed to a combination of imbalance in interfering wave amplitude,
instability of control signals, stray light (e.g., in the cladding), or amplified spontaneous emission
from optical amplifiers. Here we show that the existence of optical frequency noise in single
longitudinal mode lasers presents an additional limit to the extinction ratio of optical modulators.
A simple frequency-domain model is used to describe a linear optical system’s response in the
presence of frequency noise, and an intuitive picture is given for systems with arbitrary sampling
time. Understanding the influence of frequency noise will help guide the design choices of device
and system engineers and offer a path toward even higher-extinction optical modulators.
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1. Introduction

The past decade has seen the emergence of integrated photonics in exotic applications. Proposals
and demonstrations in quantum key distribution (QKD) transceivers [1], chip-scale optical atomic
clocks [2], and scalable quantum computing and quantum networks [3–7] have broadened the
field beyond traditional silicon-based datacomm devices. These specialized applications carry
new device constraints: footprint is often less constrained, operating wavelengths may span
the ultraviolet to mid-infrared, and active components may trade ultra-fast speed for precise
control [8–10]. In particular, quantum optics-adjacent systems have stringent requirements
on spectro-temporal control of light, down to the individual photon level. Contrasting with
telecom-focused silicon photonics, applications relying on the quantum mechanical behavior of
light are fragile — every photon matters.

For example, the future of generalized quantum information processing (QIP) relies on reducing
error rates to the point where error correcting codes can be implemented [11,12]. In the field of
trapped ion QIP, these errors can be introduced by inadequate suppression of the laser signals
used to manipulate the qubit ions. Analogous requirements exist in photon-based QIP, where
leading on-chip sources of nonclassical light use a strong pump to generate signal photons; the
pump must be strongly filtered to prevent swamping out the signal. Estimates for the required
pump suppression range from 90 to 130 dB [13–16]. Additionally, techniques such as “decoy
state” quantum key distribution are predicated on the ability to create so-called vacuum states
with zero photons transmitted in a time bin [17]. Spurious photons transmitted during this time
bin degrades the link security. An important metric for modulators in these applications is
then the extinction ratio (ER), the ratio of power transmitted in the “on” and “off” state. Many
approaches have been developed to address this high ER demand, from cascaded lattice filters to
coupled rings to tunable cascaded Mach-Zehnder interferometers [14–16,18–20]. From previous
results in literature, it is clear there are two branches of success: (ultra) high-ER static filters,
and (very) high-ER active modulators. Further, the best example of high-ER filters involves two
separate chips each with a large consumed area and substantial insertion loss.

#413850 https://doi.org/10.1364/OE.413850
Journal © 2020 Received 4 Nov 2020; revised 2 Dec 2020; accepted 7 Dec 2020; published 15 Dec 2020

https://orcid.org/0000-0001-9727-1111
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.413850&amp;domain=pdf&amp;date_stamp=2020-12-15


Research Article Vol. 28, No. 26 / 21 December 2020 / Optics Express 39607

To make progress in reducing device size, or increasing ER, it is necessary to understand what
limits ER and how a specific device architecture is affected. The vast majority of integrated
photonic modulators are based on destructive interference between two optical waves and as
such are exquisitely sensitive to imbalance in the wave amplitudes. As a result, the largest and
most well-understood factor in ER is a result of stochastic fabrication variations — variance in
geometric parameters, sidewall roughness [21], and perturbations in material properties such as
refractive index. Such imperfections manifest as variation in splitting ratios and propagation
loss which imbalance the interfering wave amplitudes. Other factors include stray photons
which propagate in the cladding layers, instability of the modulation control signal, polarization
impurity, and spurious signal from amplified spontaneous emission (ASE) [13,14,19,22].

In this work we discuss the behavior of optical modulators in the presence of laser frequency
noise and show that such noise places a fundamental limit on the ER of a filter or modulator.
All real, single-frequency lasers exhibit a characteristic spectral distribution of power in the
optical frequency domain, a consequence of inescapable physical processes. This spectral
distribution (“lineshape”) has been studied in the context of channel crosstalk frequency-
multiplexed communication networks [23,24]. Similarly, the behavior of resonators in the
presence of laser frequency and cavity resonance fluctuations — the dual process of laser
frequency fluctuation — has been analyzed in detail [25]. However, these works do not address
the impact on extinction ratio. Here we expand the discussion of optical device behavior with
finite-linewidth sources and show that this distribution of power can limit the time-averaged
ER markedly. We discuss how different modulator architectures are affected, and use a simple
frequency-domain model to accurately predict system response. Analytic solutions are given
for the extinction of Mach-Zehnder and ring resonator modulators probed with a Lorentzian
laser. We experimentally validate the model and demonstrate the importance of the exact laser
lineshape on the extinction ratio.

2. Modeling

Consider an oscillating, single-frequency, linearly-polarized electric field without amplitude
noise. We can express its time evolution through its phase Φ(t) as

E⃗(r⃗, t) = E⃗(r⃗) exp [jΦ(t)] (1)

= E⃗(r⃗) exp [jω0t + jϕ(t)] . (2)

where ϕ(t) are zero-mean phase fluctuations of the field observed from a reference frame rotating
at the carrier frequency ω0 = 2πν0. The value of ϕ(t) varies in time as a result of both stochastic
processes, such as spontaneous emission, and environmental perturbations, such as temperature
fluctuations or mechanical vibrations. These phase fluctuations can also be expressed as frequency
fluctuations δν(t), up to a global phase, through a time derivative δν(t) = 1/2π∂ϕ(t)/∂t. For
the purposes of this work, phase noise and frequency noise are taken to be synonymous, and
frequency noise is used preferentially due to its easily-grasped intuition and mathematical
representation. Based on situation, lasers are often quoted in terms of “linewidth” and “center
frequency stability”. These are not distinct as they are based on the time scale of measurement
— this will be further elucidated, below. We make the choice to define a time-invariant center
frequency with all fluctuations around this value.

Next consider using this signal to interrogate a device whose transfer function has a local
minimum. Figure 1(a) illustrates the signal fluctuating around minimum of the transmission
function. Clearly, in the presence of frequency noise, there is some non-zero integrated time
during which the signal’s instantaneous frequency ν0 + δν(t) is away from the local minimum.
As a result there is a greater time-averaged power transmission than would be observed if a truly
single-frequency signal were used. This is the basis of our claim: The presence of laser frequency
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noise results in higher-than-predicted transmitted power around a transmission null, which places
a limit on the measured extinction ratio.

Fig. 1. (a) A cartoon illustrating how frequency fluctuations sample multiple points on a
transfer function, over time. The magnitude of the fluctuation is exaggerated greatly for
clarity. (b) The long-time-average picture, where frequency noise is represented by the
resulting power distribution function — a lineshape. Even for very disparate filter and signal
FWHM, the decaying Lorentzian-like tails are poorly suppressed. When the near-carrier
power is highly suppressed, the power carried in these tails becomes a significant of the
transmission. The filter here has a true zero at its center wavelength, and the lineshape is
normalized to unity power. Ω is the offset between signal and filter center frequencies.

To describe this limitation rigorously we must quantify the amount of time the signal spends
at each point on the transfer function. Thankfully a mathematical construction describing this
already exists: the signal lineshape. Lineshape describes the spectral distribution of power (over
some time scale) and is analogous to a probability distribution function of the instantaneous
frequency position in time. The short, high-frequency excursions of the signal become slowly-
decaying spectral tails, shown in Fig. 1(b). While power contained in these tails is typically
ignored it becomes an appreciable contribution to total transmission when the near-carrier power
is highly suppressed. If the signal’s lineshape L(ω) and the device’s transmission function H(ω)
are known, the total transmitted power is the integral of their product. With an offset Ω between
some reference frequency on each (e.g. the center frequencies) it becomes the cross-correlation
between signal and transmission function

Teff (Ω) =

∫ ∞

−∞

H(ω)L(ω −Ω)dω. (3)

While many simple descriptions exist for L(ω), such as Lorentzian and Voigt functions
which are typically specified by their full-width at half-maximum (FWHM), these have subtle
approximations built-in. In general, real noise processes are complex and do not yield analytic
lineshapes. However, if the signal’s frequency noise spectra is measured (there are many
techniques, see [26–29]) the corresponding lineshape can be calculated numerically. We will
refer to the FWHM of this line shape this as the “FT linewidth”. Plentiful literature discusses
the details of the noise-to-lineshape calculation [29–32]. In Appendix A we condense these
calculations so far as is relevant for this work. The important takeaway is that there is no standard
definition of “linewidth” — confusing quoted values in literature and from commercial vendors
— and the single-valued metric is not always sufficient to describe the signal’s behavior. One
of the most common definitions is referred to as the “fundamental” or “Lorentzian” linewidth,
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which stems from the well-known result of Schawlow and Townes [33]. This definition assumes a
white noise spectrum whose magnitude is extracted from the asymptotic limit at high frequencies
[34–36], where technical noise sources are assumed to be negligible. By ignoring technical
noise — which is typically many orders of magnitude larger than the floor set by spontaneous
emission — the fundamental linewidth can give much smaller values than other metrics. Another
common definition is the “integral” linewidth [37], which computes the frequency above which
the integrated phase noise is 1 radian. While the integral linewidth does take the real phase
noise spectrum into account, like any definition of “linewidth” it is blind to noise content at
lower frequencies. These definitions are then most useful in applications where the measurement
period is shorter than the inverse linewidth. All three definitions here (“fundamental/Lorentzian”,
“integral”, and “FT”) converge to the same value for white noise. In Sec. 3 we demonstrate that
low-frequency distortions of the lineshape can be important for accurately predicting system
response.

For the sake of obtaining analytic results with Eq. (3), we will start by treating the lineshape
as Lorentzian with a given full-width at half-maximum. This corresponds to a frequency noise
spectrum which is entirely white, as would be approximately true for a laser whose noise is limited
by spontaneous emission. Transfer functions for common modulators, based on Mach-Zehnder
Interferometer (MZI) and “all-pass” ring resonators (MRR), are given by [38,39]

HMZI(ω) =
1
2

[︃
1 − cos

(︃
π
(ω − ω0)

∆ωFWHM

)︃]︃
(4)

HMRR(ω) =
(ω − ω0)

2

(∆ω/2)2 + (ω − ω0)2
. (5)

It is worth pointing out that for MZI structures with balanced path lengths, the transfer
function’s curvature results from the achromaticity of the beamsplitter elements and is not
necessarily sinusoidal. For broadband devices, where the effects relevant to this work are confined
to within 1 FWHM, a fitted sinusoid is a suitable approximation for the real transfer function.

Equations (4) and (5) assume perfect “intrinsic” extinction — the smallest function value
computed with an infinitely narrow source is zero — and can be easily modified to account for a
non-zero minimum value. For a Lorentzian lineshape with unit power, analytic solutions exist for
the cross-correlation with both MRR and MZI transfer functions:

Teff ,MRR(Ω) =
∆ω2

L + ∆ωF∆ωL + 4Ω2

(∆ωF + ∆ωL)2 + 4Ω2 (6)

Teff ,MZI(Ω) =
1
2

[︃
1 + cos

(︃
πΩ

∆ωF

)︃ (︃
sinh

(︃
π∆ωL

2∆ωF

)︃
− cosh

(︃
π∆ωL

2∆ωF

)︃)︃]︃
(7)

where ∆ωL is the signal FWHM and ∆ωF is the transfer function FWHM. It is clear that even for
Ω = 0 there is nonzero minimum transmission in both cases, and that the value is a function of
the ratio of signal and transfer function FWHM. Figures 2(a) and (b) illustrate these results for
several signal FWHM. For the realistic case of finite “intrinsic” extinction, the transmission curve
becomes a function of the lineshape — naturally, a very (relatively) narrow signal will more
faithfully represent the filter while a broad signal will behave similarly to the analytic results
above.

A naïve solution would be to lock the signal to the local minimum [40], suppressing the
high-frequency-offset excursions. The most common techniques to lock to a local minimum
involve frequency dithering either the signal or the modulator itself. In both cases sidebands are
generated which are spectrally offset from the transmission null, resulting in unwanted power
transmission. Other approaches such as side-of-fringe do not lock to the local minimum, again
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Fig. 2. Analytic solutions for the cross-correlation of a Lorentzian lineshape of various
FWHM with (a) a Mach-Zehnder-like (sinusoidal) transfer function with 5 THz FWHM and
(b) a ring resonator-like (Lorentzian) transfer function with 1 GHz FWHM.

resulting in poor extinction. Furthermore, any locking or work done to reduce low frequency drift
is equivalent to adding a phase term ϕ′(t) to the exponent of Eq. (2) which reduces the variance
of fluctuations, that is ⟨(ϕ′(t) + ϕ(t))2⟩<⟨ϕ(t)2⟩. This is equivalent to simply using a laser which
has lower phase noise and the theory we develop here suitably describes the locked system.

3. Experimental validation

We created a variable-linewidth laser using the setup shown in Fig. 3(a). A commercial C-
band tunable semiconductor laser (Santec TSL-550) is fed through a broadband electro-optic
phase modulator (EOM, EOSpace 20 GHz BW), which is in turn driven by a broadband white
noise generator (Toptica Laser Coherence Controller (LCC)). An in-line attenuator controls the
electrical power injected into the EOM and an in-line low pass filter (30 MHz cutoff frequency)
is used to control the shape of the electrical signal. This setup permits independent control of the
center frequency and (additive) noise spectrum. For simulating more complex noise spectra, a
shaped RF input (e.g. from an arbitrary waveform generator or a passively-filtered noise source)
can be used in place of the simple white noise generator. As long as the desired noise spectra
can be achieved by adding noise, this allows arbitrary manipulation of the laser noise/lineshape.
Here, laser frequency noise spectra for various injected RF noise powers are measured using an
unbalanced MZI approach [26] with an HP89410A vector signal analyzer and given in Fig. 3(b).
We used this laser to measure a filter’s transmission, at each injected noise level. To verify that
TE-TM polarization coupling was not occurring in the phase modulator, we measured a set of
resonances at various RF input and found the optimum polarization to maximize the resonance
extinction; the optimal paddle positions were found to be independent of RF power.

Our filter was a ring resonator with a ∼ 7 MHz full-width at half-maximum and 3 GHz
free spectral range. By sweeping the laser wavelength and observing the transition from an
under-coupled to over-coupled state, we found the ring was near critically-coupled around 1580
nm. The highest-extinction resonance was located manually, and all subsequent measurements
performed on this resonance. We observed a maximum 19 dB ER, and this value was insensitive
when neighboring resonances were measured. This is consistent with our laser’s minimum
achievable noise — no noise injected via the EOM — and the theory described in Section 2,
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Fig. 3. (a) Our experimental setup, showing the variable-noise laser alongside the measured
resonator and noise-measurement apparatus. PD = Photodiode, DAQ = Data Acquisition
Module, Pol. Rot. = Polarization Rotation paddles. (b) Measured single-sided frequency
noise spectra at several RF (noise) power levels.

though in this section we focus on the trends.We used an external ramp generator (Vescent
D2-125 laser servo) to sweep the laser’s center frequency over the resonance at a 50 Hz repetition
rate and recorded the photodiode (PD, Thorlabs PDA10CD) signal on a 1.25 MSamp/sec 16 bit
data acquisition board (DAQ, National Instruments USB-6251), examples of which are shown in
Fig. 4(a). The extinction ratio was extracted from these transmission curves. Without attenuation,
approximately 50 mW of RF noise power is injected into the EOM. Because the laser frequency
was dynamically swept during the measurement it is necessary to check that the reduced extinction
is not a result of an averaging effect from the injected frequency ramp. Based on our sweep rate,
frequency span, and sampling rate, we estimate that without the effects of finite laser linewidth
the extinction floor would be ∼ 45 dB (near the noise floor of the ADC resolution).

The noise spectra in Fig. 3(b) are used to compute corresponding lineshapes using the process
described in Appendix A., shown in Fig. 4(c), with the label corresponding to the curve FWHM.
We choose to report the FWHM to illustrate the difference between the fundamental linewidth
(425 Hz), the integral linewidth (79 kHz), and the FWHM linewidth (260 kHz). Additionally,
non-Lorentzian pedestals form at higher injected noise power and begin to fall off at 30 MHz
where the injected noise is reduced by a low-pass filter. It is worth noting that because the laser’s
center frequency is artificially swept over the resonance at some rate, the low frequency noise
processes manifest as center frequency shifts of the measured transmission function. We aligned
the resonances in data processing and found this was equivalent to ignoring frequency noise
below ∼ 3 kHz. Thus, the transformed lineshapes in Fig. 4(c) represent the noise in Fig. 3(b)
above 3 kHz. Numerically convolving these lineshapes as expressed in Eq. (3) gives a prediction
of the maximum extinction, which is compard to the measured values in Fig. 4(b). The predicted
values match the trend in measured values extremely well. For comparison we analytically
compute the expected trend if the laser lineshape were Lorenzian, with an equivalent FWHM
value. This result demonstrates the dependence of behavior on lineshape — the non-Lorentzian
features changes both the value of extinction for a given linewidth, and the curvature of the trend.
While these pedestals are a consequence of the injected noise and low-pass filtering, similar
frequency noise structures (and thus features on the lineshape) can be caused by, for example,
mechanical resonances in an external cavity, feedback servo bumps, phase-amplitude coupling,
carrier injection/optical pump noise, and relaxation oscillation resonances.
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Fig. 4. (a) Example measured transmission spectra, at various levels of injected noise. (b)
The measured extinction ratio (blue crosses) and the numerically-predicted values using the
computed lineshapes from (a) (orange dots), with a curve fit to illustrate the trend (orange
dashed line). Using a cross-correlation with analytic filter/signal functions for a given laser
FWHM (red dashed line), does not follow the experimental data, and diverges quite strongly
at small FWHM linewidths. (c) Calculated laser lineshapes using the Fourier transform of
the frequency noise spectrum. The given widths are the FWHM of these spectra.

4. Discussion

While the main result here is the extinction cap induced by laser frequency noise and its
dependence on lineshape, there are several interesting implications.

The first is that, over repeated measurements, the average extinction ratio is set by the noise
properties of the laser and filter shape and is independent of sampling time. While fast sampling
times only observe higher frequency noise (typically smaller in magnitude than low-frequency
noise), resulting in a narrower “sampled” linewidth, the low frequency noise components then
correspond to carrier frequency drift. Figure 5(a) provides an intuitive picture for this behavior.
As a result, the average transmission of samples taken over a time period T will converge to the
result obtained using a lineshape calculated from frequency noise measured down to frequencies
∝ 1/T and the theory described above.

The second takeaway is not immediately intuitive: cascading multiple identical filters does not
increase extinction additively (in dB). This can be seen easily by imagining a band-stop filter with
perfect suppression over some finite bandwidth, and perfect transmission outside that bandwidth.
Serially linking these filters does not change the overall transfer function (if the filters are aligned)
and thus does not change the transmitted power. As a more practical example, cascading two
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Fig. 5. (a) An illustration comparing the lineshape calculated with low frequency noise,
and the spread of effective lineshapes with a short sampling time. The distribution of
fast-sampled curves cumulatively average to the “long time average” curve. (b) The common
filter shapes used to create optical modulators. The device cartoons represent integrated
photonic devices which produce such filter shapes: from left to right an “all-pass” ring
resonator, a multi-pole coupled resonator observing the drop port, and an element such as an
optical amplifier or electro-absorption material.

Lorentzian filters with infinite intrinsic extinction (but finite real extinction, limited by the laser’s
noise) improves extinction by only about 3 dB. Additional filters contribute incrementally less and
less suppression, asymptotically approaching 5.1 dB for each tenfold increase in number of filters.
Of course, linear system theory is still applied when the spectral decomposition of the signal is
known, as is done here, but this can be difficult in practice. Experimentally, transmission curves
are measured against center frequency without taking the signal’s bandwidth into account. Thus,
the observed transmission curve does not exactly represent the measured device, though this effect
is of course dependent on the relationship between the filter’s linewidth, its intrinsic extinction,
and the signal linewidth. In cases where the intrinsic extinction is limiting (∆ωL<<∆ωF) the
single-frequency source approximation is good and the extinctions will approximately add. When
the signal bandwidth is limiting, the effect may be minimal.

This framework also applies itself to another fundamental noise source: thermorefractive
noise. Thermal fluctuations in the local refractive index cause the center frequency of any
interferometric filter to move in time. In the reference frame of the filter these fluctuations appear
on the incident signal and thus the analysis introduced above can be applied. References [41] and
[42] provide excellent introductions to thermorefractive noise, particularly as it relates to induced
frequency micro and nano-scale optical resonators.
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In practice, this understanding also helps to inform modulator design when high ERs are
desired. Our discussion has focused on band-stop filter shapes, as the prevalence of ring and
MZI modulators make them pertinent. There are three general classes of transfer functions used
for modulators, illustrated in Fig. 5(b) with cartoons of integrated optical devices which result in
such transfer functions. Clearly, the band-stop filters are more susceptible than band-pass filters
to transmitting power away from the carrier; the band-pass filter response naturally suppress the
tails outside the pass band, limiting the effect to the integrated power over this (relatively narrow)
width. Similarly, gain/absorption-based structures are typically wideband — flat response over
hundreds of GHz or a few nanometers, in this context — and are relatively less affected.

5. Conclusion

Here we have introduced laser frequency noise as a contributor to extinction ratio limits in
optical modulators and filters. Even for single-frequency lasers, stochastic fluctuations in
the instantaneous frequency give rise to a finite linewidth which is unevenly suppressed by
common modulator architectures. A simple mathematical model is introduced which predicts
the average extinction ratio of a modulator over many samples and which is valid for arbitrary
lineshapes/frequency noise spectra. We validate the theory with an experiment, using a variable-
linewidth laser and a common ring resonator. We believe this new understanding will aid the
development of ultra-high-extinction modulators.

Appendix A. Frequency noise and lineshape

Before discussing its effect on modulator performance, a description of frequency noise and its
relationship to laser lineshape is needed. A variety of literature is available which discusses
common noise processes [29,32,33,43], metrics for characterizing noise (e.g., definitions of
linewidth) [30,37,44], and techniques for measuring this noise [26–29]. Portions of this are
briefly reiterated, here.

Returning to Eq. (2), consider an oscillating, single-frequency, linearly-polarized electric field
without amplitude noise. We can express its time evolution through its phase Φ(t) as

E⃗(r⃗, t) = E⃗(r⃗) exp [jΦ(t)]

= E⃗(r⃗) exp [jω0t + jϕ(t)]

where ϕ(t) are zero-mean, Gaussian-distributed phase fluctuations of the field observed from a
reference frame rotating at the carrier frequency ω0 = 2πν0. These phase fluctuations can also
be expressed as frequency fluctuations δν(t), up to a global phase, through a time derivative
2πδν(t) = ∂ϕ(t)/∂t. The relationship between frequency fluctuations and the lineshape are
described by the Wiener-Khinchin theorem, which states that the spectral power distribution
SE(f ) of a process is given by the Fourier transform of the processes’ autocorrelation REE(τ):

SE(f ) = F {REE(τ)} . (8)

The autocorrelation is related to the fluctuation in phase by

REE(τ) = ⟨E(t)E∗(t − τ)⟩ (9)

∝ E2
0ej2πντe−⟨∆φ(τ)

2 ⟩/2. (10)

Finally, the exponent in the second exponential can be computed from the frequency noise
power spectral density (PSD) as [29–32,43]

⟨∆ϕ(τ)2⟩/2 = 2
∫ ∞

−∞

Sν(f )
sin(πf τ)2

f 2 df , (11)
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where Sν(f ) is the two-sided frequency noise PSD in Hz2/Hz. Note that most references plot
the one-sided PSD (including here, in Fig. 3). The simplest result is for white noise, Sν(f ) = h0.
This corresponds to an autocorrelation with pure exponential decay, whose Fourier transform is
the Lorentzian function with FWHM 2πh0 (the “intrinsic” linewidth). Spontaneous emission
is modeled as white noise, the magnitude of which is predicted by the well-known Schawlow-
Townes equation. Strictly, because the spontaneous emission rate is dependent on gain at a given
frequency, it is not truly white. However, most lasers exhibit gain bandwidths on the order of
gigahertz to (many) terahertz, much wider than most single-frequency linewidths, and so the
white noise approximation is appropriate. When the frequency noise PSD incorporates more
complex features, the Fourier transform is generally not analytically solvable. With Eq. (8) it is
straightforward to take an arbitrary measured frequency noise spectrum and numerically compute
the effective lineshape. In the presence of ∝ 1/f n “colored” noise, the spectrum takes on a Voigt
structure, mixing Gaussian (near carrier) and Lorentzian (far from carrier). This results in a
broader (near carrier), faster-decaying lineshape with more power concentrated at low offset
frequencies. Other definitions such as the “integral” [37] or “beta-separation” [30] methods take
the complex frequency noise into account in a prescribed manner. For white noise, all definitions
converge to the same Lorentzian FWHM value.
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