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Abstract

In this work, we propose a two-stage algorithm based on Bayesian modeling
and computation aiming at quantifying analyte concentrations or quanti-
ties in complex mixtures with Raman spectroscopy. A hierarchical Bayesian
model is built for spectral signal analysis, and reversible-jump Markov chain
Monte Carlo (RJMCMC) computation is carried out for model selection and
spectral variable estimation. Processing is done in two stages. In the first
stage, the peak representations for a target analyte spectrum are learned.
In the second, the peak variables learned from the first stage are used to
estimate the concentration or quantity of the target analyte in a mixture.
Numerical experiments validated its quantification performance over a wide
range of simulation conditions and established its advantages for analyte
quantification tasks under the small training sample size regime over con-
ventional multivariate regression algorithms. We also used our algorithm
to analyze experimental spontaneous Raman spectroscopy data collected for
glucose concentration estimation in biopharmaceutical process monitoring
applications. Our work shows that this algorithm can be a promising com-
plementary tool alongside conventional multivariate regression algorithms in
Raman spectroscopy-based mixture quantification studies, especially when
collecting a large training dataset with high quality is challenging or resource-
intensive.

∗Corresponding author
Email addresses: ningren@mit.edu (Ningren Han), rajeev@mit.edu (Rajeev J.

Ram)

1

ar
X

iv
:1

80
5.

07
68

8v
1 

 [
st

at
.A

P]
  2

0 
M

ay
 2

01
8



Keywords: chemometrics, Bayesian inference, MCMC, multivariate
regression
PACS: 02.70.Uu, 07.05.Kf, 82.80.Gk, 87.64.kp
2000 MSC: 62P35, 6207, 62F15

1. Introduction

The ability to directly probe the vibrational and rotational state of molecules
in the spectral domain has made Raman spectroscopy one of the most widely
used tools for chemical and material identification and quantification in phys-
ical and biological science. Unlike its close cousins such as near-infrared ab-
sorption spectroscopy or fluorescence spectroscopy, Raman spectroscopy of a
chemical usually exhibits distinct sharp spectral peaks in the probing region
corresponding to various energy transition levels, which some would refer to
as the “Raman fingerprint” of the chemical. This high specificity feature is
perhaps one of the main reasons for the popularity of Raman spectroscopy
despite of its weak signal strength relative to other optical spectroscopy tech-
niques.

Extracting the concentration or quantity information pertaining to cer-
tain chemical of interest from a complex mixture spectrum is one of the
central themes of modern chemometrics research. Figure 1 shows example
spontaneous Raman spectra of a physical mixture as well as its four compo-
sition materials, namely glucose, lactic acid, L-lysine, and sodium pyruvate.
Concentration or quantity estimation for any or all the composition mate-
rials from a set of mixture spectra can be performed with or without any
prior knowledge on the Raman spectra of the composition materials. The
most widely used analytical methods include supervised multivariate learn-
ing algorithms such as partial least squares regression (PLSR) (Wold et al.,
2001), principle component regression (PCR) (Næs and Martens, 1988), arti-
ficial neural networks (ANNs) (Marini et al., 2008), support vector regression
(SVR) (Brereton and Lloyd, 2010) among others (Miller and Miller, 2010,
chap. 8). In these methods, a “calibration” process, which is essentially
training to the machine learning and applied statistics community, is first
carried out for model construction and model selection. The resulting model
is subsequently evaluated with cross-validation, bootstrap, or independent
test sets.

Despite the general popularity and success of these supervised and training-
based multivariate learning algorithms for spectral data analysis, there are
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Figure 1: (a) The Raman spectrum contains quantitative information from the mixture
molecules under examination. (b) An example Raman spectrum for a physical mixture
containing four compositions in (c) at a molar concentration ratio of 1 : 0.47 : 0.66 : 0.35.
(c) Raman spectra for the four composition materials in the mixture in (b) measured
independently at equal concentrations.

limitations that prevent them from being effective or optimal for certain ap-
plications. The dependence on the training process means that sufficient
mixture spectral data together with the ground truth measurement need to
be collected first, possibly in large volume, before a reliable model is built.
The process of training data collection itself could be prohibitively expen-
sive or labor-intensive. For example, when using Raman spectroscopy as
an on-line tool for monitoring the nutrient and metabolite concentrations
in biopharmaceutical processes, the performance of PLSR improves signif-
icantly with more training samples at the expense of running the process
multiple times (Whelan et al., 2012). In addition, one might need to rerun
the training data collection process if certain aspects of the experiment is
later modified, e.g. if the growth medium composition is changed in the
biopharmaceutical process monitoring example. It is therefore preferable to
have an analytical method that can directly perform analyte quantification
from the mixture spectrum without a large training pool to begin with in
these situations.

Another common complication typically associated with Raman spec-
trum processing is baseline estimation and correction (Liland et al., 2010).
Baseline signal exists in various forms such as autofluorescence signal from
the background material and can exhibit complicated non-linear dynamic
behavior due to phenomenon such as autofluorescence photo-bleach and re-
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covery. This is especially true for biological samples, where the dominant
signal comes from intrinsic fluorophores such as NADH, flavin and aromatic
amino acids (Afseth et al., 2006; Butler et al., 2016). A number of algo-
rithmic techniques exist to facilitate automatic baseline estimation and cor-
rection (Ruckstuhl et al., 2001; Lieber and Mahadevan-Jansen, 2003; Zhao
et al., 2007; Galloway et al., 2009; de Rooi and Eilers, 2012; He et al., 2014).
However, as mentioned in Moores et al. (2016), most of these methods aim
at estimating the baseline signal alone without jointly estimating the peak
signals, which may bring potential risks of introducing bias and errors from
these separate steps to the estimation.

In this work, we aim at developing an alternative technique to conven-
tional multivariate regression algorithms for analyte quantification in com-
plex mixtures with a Bayesian modeling and computation approach. More
specifically, given a priori the Raman spectrum measurement of an analyte of
interest, which we term as the target analyte in our text, our goal is to quan-
tify its concentration or quantity in a complex mixture spectrum without
the need of acquiring additional mixture training data, a scenario that fre-
quently arises in various applications. In addition, the Bayesian approach al-
lows us to simultaneously estimate both the peak and baseline signals, which
could mitigate the potential bias and errors with separate estimation steps.
There exist several publications aiming at bringing the Bayesian modeling
framework to spectral data analysis. Razul et al. (2003); Fischer and Dose
(2005); Wang et al. (2008); Nagata et al. (2012); Tokuda et al. (2016) used
Bayesian modeling combined with computational methods such as reversible-
jump Markov chain Monte Carlo (RJMCMC) or the exchange Monte Carlo
method for accurate spectrum variable estimation in various areas such as
nuclear emission spectroscopy and mass spectrometry. For Raman spectral
data analysis, Zhong et al. (2011) used the Bayesian framework and com-
bined Gibbs and RJMCMC sampler to infer mixture information from a set
of multiplexed surface-enhanced Raman spectroscopy (SERS) measurements.
Moores et al. (2016) used a sequential Monte Carlo (SMC) sampler for opti-
mal baseline correction and low-concentration analyte quantification. While
building upon the common Bayesian modeling and computation principles,
our work differs from these prior work due to the fact that our algorithm
employs a two-stage processing for quantifying target analyte concentrations
in complex mixtures as an alternative to multivariate regression methods
such as PLSR with no requirement on pre-existing mixture training data. In
Section 2, we provide the statistical framework and computation procedure
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for our two-stage algorithm, where the first stage is used to learn the peak
information for the pure target analyte spectrum and the second stage is for
quantifying its concentrations in mixtures. In Section 3, we first demonstrate
the utility of this algorithm by testing its performance on a wide range of nu-
merically generated datasets and compare its results with several multivariate
regression algorithms. We then report its estimation results on experimental
spontaneous Raman spectroscopy data collected for monitoring glucose con-
centration in biopharmaceutical process with Chinese hamster ovary (CHO)
cells, which are the most widely used expression systems for industry pro-
duction of recombinant protein therapeutics such as monoclonal antibodies
used in cancer therapy.

2. Methods

2.1. Functional Model

Raman spectra are typically collected as one-dimensional signals from a
CCD or CMOS detector placed after a dispersive element such as a diffraction
grating. Assuming that there are N spectral data points, we model the
discrete Raman signal as

y = fP (ν) + fB(ν) + ε, (1)

where y ∈ RN represents the spectrum array, ν ∈ RN represents the corre-
sponding Raman shift in wavenumbers, fP (ν) and fB(ν) are the functional
arrays describing the shape for the Raman peaks and baseline of the signal,
and ε ∈ RN is the noise term. fP (ν) is modeled as the sum of individual
Raman peaks each corresponding to an energy transition level as

fP (ν) =

kP∑

j=1

βP,jg(ν; θP,j),

where g(ν; θP,j) is the functional form for the shape of the j-th peak with θP,j
containing the shape variables, and βP,j is the corresponding amplitude vari-
able. Depending on the relative contributions from the amplitude correlation
time and the coherence lifetime to the effective lifetime of the excited energy
states, the functional line shape of a Raman peak can be of the Gaussian
profile, the Lorentzian profile, or a combination of both, in which case it can
be represented by the Voigt profile (Bradley, 2015). As a popular approxima-
tion to the computationally-expensive Voigt profile, the pseudo-Voigt profile
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uses a linear combination of the Gaussian profile and the Lorentzian profile
controlled by a weight factor to adjust their relative contributions (Wertheim
et al., 1974). This is what we choose to model the line shape of the Raman
peaks in our study. With lj as the centroid location, wj as the full width at
half maximum (FWHM), and ρj as the weight factor for the j-th peak, we
denote the peak variables for the j-th peak as θP,j = (lj, wj, ρj). This leads
to

g(ν; θP,j) = ρj exp

{
−4 ln 2 (ν − lj)2

w2
j

}
+ (1− ρj)

1

1 +
[

2(ν−lj)

wj

]2 . (2)

Meanwhile, the baseline signal fB(ν) is modeled with a B-spline function,
which can be represented as

fB(ν) =

kB∑

j=1

βB,jBd,j;t(ν).

Here, Bd,j;t(ν) is the j-th basis function with degree d and knots t, and
can be derived from the Cox-de Boor recursive formula (De Boor et al.,
1978). kB is the number of spline basis functions and βB,j is the amplitude
coefficient for the j-th basis. In our modeling, the knots t ∈ Rkt are chosen
as equally-spaced locations in the wavenumber domain and the number of
knots kt satisfies the constraint that kt = kB + d+ 1. In addition, we choose
to have a fixed number of spline basis with kB = 4 and set the degree d of
the basis function as 3. For Raman spectroscopy, the noise ε may come from
a variety of sources including signal shot noise, detector dark current shot
noise, temperature and environment fluctuations, laser instability, and so on.
With the contributions from these independent sources, we approximate the
noise in the observed signal as independent and identically distributed (i.i.d.)
Gaussian random noise across the spectral domain.

With the above formulation, Equation 1 can be expressed in a typical
Bayesian linear regression form as

y = Xk(θP )βk + ε, (3)

with y ∈ RN , ε ∈ RN , βk = (βP ,βB) ∈ Rk, k = kP + kB as the overall
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model dimension, and Xk(θP ) ∈ RN×k as

Xk(θP ) =




g(ν1; θP,1) . . . g(ν1; θP,kP ) Bd,1;t(ν1) . . . Bd,kB ;t(ν1)
g(ν2; θP,1) . . . g(ν2; θP,kP ) Bd,1;t(ν2) . . . Bd,kB ;t(ν2)

...
. . .

...
...

. . .
...

g(νN ; θP,1) . . . g(νN ; θP,kP ) Bd,1;t(νN) . . . Bd,kB ;t(νN)


 .

With the Gaussian random noise assumption mentioned above, we have

ε ∼ N (0, σ2IN),

where σ2 is the noise variance and IN is the identity matrix with dimension
N .

Given an observed Raman spectrum y, we can jointly estimate the signal
decomposition matrix Xk(θP ) as well as the corresponding regression coef-
ficients βk in Equation 3. As the number of Raman peaks kP is in general
not known ahead of the time, model selection is required. We solve this
estimation problem by incorporating a hierarchical Bayesian model and us-
ing trans-dimensional MCMC computation for model selection and variable
estimation.

2.2. Priors

We start solving our model by incorporating Zellner’s g-prior (Zellner,
1986), which is a popular choice in Bayesian linear regression and variable
selection due to its computational efficiency and the convenience of forming
the prior covariance structure from the design matrix itself, into our formu-
lation. The prior for βk is

βk|Xk(θP ), g, σ2 ∼ N
(
βk,0, gσ

2 (Xᵀ
k(θP )Xk(θP ))−1

)
, (4)

with prior mean βk,0 and a positive scale variable g. Meanwhile, we impose
an improper Jeffery’s prior on σ2 as

p(σ2) ∝ σ−2.

Various strategies exist for the modeling of g such as empirical Bayes and
fully Bayesian (Liang et al., 2008), here we put an uninformative diffuse
inverse-gamma(ε, ε) prior to g as

g ∼ IG(ag, bg),
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with ag, bg → 0 similar to Razul et al. (2003). This allows a convenient Gibbs
update for g due to its conditional conjugacy property.

The number of Raman peaks kP present in the spectrum is modeled with
a Poisson distribution with rate or mean variable Λ as 1

kP |Λ ∼ Poisson(Λ),

and we further model Λ with a weak and uninformative conjugate gamma(ε, ε)
prior as

Λ ∼ Ga(aΛ, bΛ),

with aΛ, bΛ → 0.
Given kP Raman peaks, we assume conditional independence for the prior

distributions for the peak variables in θP . With the wavenumber region
spanning across [lmin, lmax] and ∆l = lmax − lmin, we assign a uniform flat
prior to the locations l ∈ [lmin, lmax]kP of the peaks, which leads to

l|kP ∼
kP∏

i=1

U(li; lmin, lmax) =

(
1

∆l

)kP kP∏

i=1

1[lmin,lmax](li).

For the widths of the peaks w ∈ RkP , it is desirable to obtain prior infor-
mation in order to design a suitable prior distribution. As will be described
in more details in Section 3.1, we surveyed around 100 Raman peak widths
found in common materials and fitted these samples with an inverse-gamma
distribution. To account for the limited sample space that we have surveyed
and to adopt a conservative approach (Gelman et al., 2008), we intentionally
weaken this prior knowledge by scaling the variance of the inverse-gamma
distribution by a factor of 4 while keeping the mode of the distribution fixed.
With aw and bw denoting the parameters corresponding to the scaled inverse-
gamma distribution, we have the prior distribution for w as

w|kP ∼
kP∏

i=1

IG(wi; aw, bw) =

(
baww

Γ(aw)

)kP ( kP∏

i=1

w−aw−1
i

)
exp

{
−bw

kP∑

i=1

1

wi

}
.

1Although it is more precise to model it as a truncated Poisson distribution due to the
finite number of components allowed in our computation, the choice of an untruncated
Poisson distribution results in a cleaner conditional posterior distribution without losing
much accuracy.
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As noted in Bradley (2015), the line shape of the Raman peak can depend
on the state of matter of the material due to the impact of the environment
on the effective lifetime of the excited energy states for the molecules. For
example, solids tend to have Gaussian profiles, gases tend to have Lorentzian
profiles, and liquids tend to have features of both. It is therefore possible
to assign specific priors for the relative weights ρ ∈ [0, 1]kP between the
Gaussian and Lorentzian profile for the Raman peaks based on knowledge of
the material. Here for general purpose, we assign another uninformative flat
prior in the range of [ρmin, ρmax] with ρmin = 0, ρmax = 1, and ∆ρ = ρmax−ρmin

for ρ, which leads to

ρ|kP ∼
kP∏

i=1

U(ρi; ρmin, ρmax) =

(
1

∆ρ

)kP kP∏

i=1

1[ρmin,ρmax](ρi).

Figure 2: Graphical model for the hierarchical Bayesian structure of the spectral signal.

The graphical model representing the hierarchical Bayesian structure of
the spectral signal is shown in Figure 2. With the likelihood function of our
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model as

p
(
y|Xk(θP ),βk, σ

2
)

=

1√
|2πσ2IN |

exp

{
− 1

2σ2
(y −Xk(θP )βk)

ᵀ (y −Xk(θP )βk)

}
,

we can express the joint posterior distribution for all the variables as

p(g, σ2,Λ, kP ,θP ,βk|y) ∝ p
(
y|Xk(θP ),βk, σ

2
)

p(g)p(σ2)p(Λ)p(kP |Λ)p(l|kP )p(w|kP )p(ρ|kP )p
(
βk|Xk(θP ), g, σ2

)
.

(5)

2.3. Bayesian Computation

No closed-form solution exists for evaluating the joint posterior distribu-
tion from Equation 5, we resort to numerical approximation with statistical
sampling. In addition, the number of Raman peaks kP is generally not known
beforehand and affects the dimensionality of the variable space XkP for the
model. Therefore, model selection across the model space with different kP
is required. A diversity of criteria and methodologies exists for Bayesian
model selection (Wasserman, 2000). Here we adopt a unified approach for
joint variable estimation and model selection with the RJMCMC technique
introduced by Green (1995); Richardson and Green (1997). The RJMCMC
method samples from the union space X = ∪kP∈K({kP} × XkP ) for the po-
tential models, where K in our case is a countable set containing all the
possible Raman peak number in the spectrum, by constructing a reversible
Markov chain in the general state space. The trans-dimensional moves across
the models in RJMCMC can be incorporated inside the general Metropolis-
Hastings paradigm in a straightforward manner. With marginalization, the
posterior probability of being in any variable space XkP can be obtained, and
model selection can be performed accordingly. For more in-depth discus-
sions on the model determination aspects with RJMCMC, Hastie and Green
(2012) serves as an excellent reference.

In the following text, we use | . . . to denote conditioning on all other
random variables. With the hierarchical Bayesian structure imposed by our
model, several variables can be conveniently updated with Gibbs sampling.
They are g, Λ, σ, and βk. The corresponding Gibbs updates are shown
in Appendix A. The conditional posterior distribution for the rest of the
variables θP and kP does not admit a tractable form. To sample θP and kP ,
we first integrate out σ2 and βk from the full joint posterior distribution for
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simplification. This leaves the conditional posterior probability for θP and
kP known to a proportionality as

p(θP , kP | . . . ) ∝
ΛkP

kP !
b̃
−N

2

σ2

1√
|(g + 1)Ik|

(
1

∆l

)kP kP∏

i=1

1[lmin,lmax](li)

(
baww

Γ(aw)

)kP ( kP∏

i=1

w−aw−1
i

)
exp

{
−bw

kP∑

i=1

1

wi

}(
1

∆ρ

)kP kP∏

i=1

1[ρmin,ρmax](ρi).

(6)

where b̃σ2 is defined in Equation A.1. Samples of θP and kP can be obtained
with the RJMCMC method, which can be viewed as a generalization of
the Metropolis-Hastings algorithm with additional trans-dimensional moves.
Denoting the current variable state as x = (θP , kP ), for any proposed variable
state x′ = (θ′P , k

′
P ), we can calculate the corresponding Metropolis-Hastings

acceptance probability a(x,x′) = min{1, A(x,x′)}, where A(x,x′) can be
calculated for each move type respectively.

Under the RJMCMC sampling scheme, in addition to the regular Metropolis-
Hastings within-dimensional moves, trans-dimensional reversible move pairs
also need to be devised. With proper engineering, by generating assistive
random variable u from proposal density g(u), the proposed state x′ can be
constructed by a deterministic function h(·) as (x′,u′) = h(x,u), where u′ is
a random variable that can be generated from proposal density g′(u′) so that
one can reversely jump from x′ back to x based on the inverse of h(·). The
transformation h(·) needs to be a diffeomorphism with matching dimensions
for (x,u) and (x′,u′), which means nx + nu = nx′ + nu′ with n being the
variable dimension. Let m and m′ be the indices for reversible move pairs
across the dimensions of x and x′ in setM containing all the possible moves
and q(m|x) be the probability of taking move m at state x, we can calculate
A(x,x′) as

A(x,x′) =
p(x′)q(m′|x′)g′(u′)
p(x)q(m|x)g(u)

∣∣∣∣
∂(x′,u′)

∂(x,u)

∣∣∣∣ ,

where | · | denotes the determinant of the transformation Jacobian.
In this work, we employ four trans-dimensional moves to facilitate cross

model mixing, where similar strategies can be found in applications such as
Bayesian mixture estimation (Richardson and Green, 1997). These moves
are:
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1. Birth of a new peak.

2. Death of an existing peak.

3. Split of an existing peak.

4. Merge of two adjacent peaks.

The RJMCMC move acceptance probabilities for the within-dimensional
move as well as each of these moves are shown in Appendix B.

With the hybrid Gibbs and RJMCMC sampling schedules described above,
we can describe an algorithm for joint peak variable and baseline estimation
with a Raman spectrum. At each sampling iteration, the RJMCMC move
for this iteration is first determined with a categorical random variable m
with the support corresponding to the indices of the available moves in M.
θP and kP are updated subsequently based on the move type m. This essen-
tially creates a combined mixture MCMC transition kernel for the update
of θP and kP . Afterwards, (g,Λ, σ2,βk) are updated with Gibbs sampling.
Once the Markov chain is fully mixed, model selection based on kP can be
performed. For example, the maximum a posteriori (MAP) estimation for
kP can be obtained as

k̂P = arg maxkP p(kP |y).

For spectra having visually distinct and well-spaced peaks, the above
Bayesian sampling schedule works well with a fixed and equally-likely move
proposal distribution for m. However, for more complex spectra having a
large number of peaks that may have tightly spaced or partially overlapping
peaks, we notice that frequent label switching caused by trans-dimensional
moves in steady state can become problematic for variable estimation (Jasra
et al., 2005). In addition, in these situations, during the early inter-state mix-
ing iterations, negative amplitudes can be assigned to some peaks (while still
maintaining an overall spectral signal match with the observed spectrum).
These peaks with negative amplitudes may stay throughout the iterations,
which create unphysical decomposition results. We address these two prob-
lems with the following approaches.

As a solution to the first problem, we employ a heuristic approach by grad-
ually decreasing the probability of taking trans-dimensional moves through-
out the iterations. At iteration i, the move type is determined from m(i)

sampling from the categorical proposal distribution p
(i)
m (m) with probability

mass as (p
(i)
w , p

(i)
b , p

(i)
d , p

(i)
s , p

(i)
m ) for each move – p

(i)
w corresponds to the within
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move, p
(i)
b and p

(i)
d correspond to the birth and death moves, and p

(i)
s and

p
(i)
m correspond to the split and merge moves. Using p

(i)
b as an example, we

adjust its value in each iteration as

p
(i)
b =

(
p

(0)
b

)1/T (i)

,

with p
(0)
w = p

(0)
b = p

(0)
d = p

(0)
s = p

(0)
m , T (0) = 1, limi→∞ T (i) = 0, and a linearly

decreasing cooling schedule for T (i). We perform this adjustment for all the
trans-dimensional moves. Meanwhile, we increase the within-dimensional
move probability accordingly with the constraint that p

(i)
w + p

(i)
b + p

(i)
d + p

(i)
s +

p
(i)
m = 1. This treatment is similar to simulated annealing, and effectively

creates a non-homogeneous Markov chain in the general state space (Andrieu
et al., 2003). Convergence results can be obtained with simulated annealing-
like algorithms (Van Laarhoven and Aarts, 1987), which we do not pursue in
this work. Once the steady state is reached, all samples are effectively drawn
from the same model with k̂P . Therefore, variable values can be estimated
without explicitly performing model selection.

For the second problem, we enforce a non-negativity constraint on the
amplitude coefficients βP for the peaks. During the sampling iterations, if
any peak with a negative amplitude is generated, we discard the sample and
restart the current iteration step until all peaks are of non-negative values.
This emulates rejection sampling and effectively adds a non-negative sup-
port constraint on βP for the prior and posterior probability distributions in
Equation 4 and Equation A.2. We note here that even without the annealing
schedule described above, this re-sampling operation is only mostly required
during early iterations where the computation is rapidly converging in the
model domain. Once the model dimension is reasonably converged, negative
peak amplitude generation seldomly occurs.

Denoting φk̂P
= (g,Λ, σ2,βk,θP ) for the variables associated with k̂P , we

can estimate the conditional posterior expected values for φk̂P
as

Ep(φk̂P
|y,k̂P )[φk̂P

] ≈ 1

M

M→∞∑

i=1

φ
(i)

k̂P
(7)

with φ
(i)

k̂P
being the i-th sample drawn from the conditional posterior distri-

bution p(φk̂P
|y, k̂P ) and M being the total number of samples. Alternative

estimation criterion such as the MAP estimator can also be used here.
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2.4. Two-Stage Algorithm

The above Bayesian formulation and computation provide a framework to
simultaneously estimate the peak and baseline signal in a Raman spectrum.
In order to further it into a quantification algorithm applicable to practical
scenarios, we propose a two-stage algorithm built upon this framework.

In many analyte quantification tasks involving Raman spectroscopy, the
goal is to quantify one or more target analyte in mixture spectra. For sim-
plicity of presentation we restrict our attentions to one target analyte but
note that the extension to multiple target analytes is straightforward. We
also assume an aqueous mixture environment in our analysis. While not re-
quired by many multivariate regression techniques such as PLSR, the actual
spectrum of the target analyte is often easy to acquire through a separate
reference measurement. Our algorithm takes advantage of this aspect by
first learning the peak representation for the target analyte at a known con-
centration. This can be achieved through the Bayesian computation process
described above working on the reference target analyte spectrum. Once the
peak variables for the target analyte are learned in this first stage, we move
on to the second stage with the mixture spectrum where the concentration
for the target analyte in the mixture needs to be determined. In this stage,
the processing is slightly modified relative to the first stage to take into ac-
count of the learned representation of the target analyte. The modifications
are described as follows.

With the peak and baseline decomposition for the reference target analyte
spectrum in the first stage as in Equation 1, and θ̂P and β̂P corresponding to
the estimated peak variables for the target analyte according to Equation 7,
we define the Raman peak signal at unit concentration for the target analyte
as

f̃P (ν) =
fP (ν)

cpure

=

kP∑

j=1

β̂P,j
cpure

g(ν; θ̂P,j), (8)

where cpure is the target analyte concentration in the reference measurement.
In the second stage, the observed signal in the mixture spectrum now can

be modeled as
y = fT (ν) + fI(ν) + fB(ν) + ε,

where here fT (ν) represents peaks originating from the target analyte, fI(ν)
represents peaks from the other analytes in the mixture, which we call the
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First stage
Input : Reference spectrum of the target analyte
Initialize T (0), (p

(0)
w , p

(0)
b , p

(0)
d , p

(0)
s , p

(0)
m ), and the spectrum variables

for i← 1 to I do

Determine move type m(i) with (p
(i)
w , p

(i)
b , p

(i)
d , p

(i)
s , p

(i)
m )

Based on move type m(i), sample θP with RJMCMC and update
kP

Sample g, Λ, σ2, βk = (βP ,βB) with Gibbs sampling
if ∃βP,j ∈ βP s.t. βP,j < 0 then

Discard current samples and restart current iteration
end

Update i, T (i), (p
(i)
w , p

(i)
b , p

(i)
d , p

(i)
s , p

(i)
m )

end

Estimate θ̂P , β̂P , and calculate f̃P (ν)

Second stage
Input : Mixture spectrum
Initialize T (0), (p

(0)
w , p

(0)
b , p

(0)
d , p

(0)
s , p

(0)
m ), and the spectrum variables

for i← 1 to I do

Determine move type m(i) with (p
(i)
w , p

(i)
b , p

(i)
d , p

(i)
s , p

(i)
m )

Based on move type m(i), sample θI with RJMCMC and update kI
Sample g, Λ, σ2, βk = (cmix,βI ,βB) with Gibbs sampling
if ∃βI,j ∈ βI s.t. βI,j < 0 then

Discard current samples and restart current iteration
end

Update i, T (i), (p
(i)
w , p

(i)
b , p

(i)
d , p

(i)
s , p

(i)
m )

end
Estimate ĉmix

Algorithm 1: The two-stage algorithm for analyte quantification in mix-
ture spectrum with Bayesian modeling and computation.

interfering analytes, and the rest follows as previous. The target analyte
signal fT (ν) is related to its concentration in the mixture cmix as

fT (ν) = cmixf̃P (ν).

In order to solve for cmix, a similar Bayesian computation process relative
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to the first stage can be carried out except for that f̃P (ν) is kept as a fixed
basis with estimated θ̂P and β̂P as in Equation 8. With θI as the peak
variables for the interfering analytes, this means that Xk(θI) ∈ RN×k, now
depends on θI , is

Xk(θI) =



f̃P (ν1) g(ν1; θI,1) . . . g(ν1; θI,kI ) Bd,1;t(ν1) . . . Bd,kB ;t(ν1)

f̃P (ν2) g(ν2; θI,1) . . . g(ν2; θI,kI ) Bd,1;t(ν2) . . . Bd,kB ;t(ν2)
...

...
. . .

...
...

. . .
...

f̃P (νN) g(νN ; θI,1) . . . g(νN ; θI,kI ) Bd,1;t(νN) . . . Bd,kB ;t(νN)




to take into consideration of the target analyte spectrum. Correspondingly,
βk = (cmix,βI ,βB) ∈ Rk, kI represents the number of peaks coming from
the interfering analytes in the mixture, and k = kI + kB + 1. Afterwards, all
the variable sampling schedule and estimation procedure from the previous
section can be directly applied to estimate ĉmix and the rest of the variables.
The overall algorithm is shown in Algorithm 1.

3. Results

3.1. Numerical Experiment Setup

We first set up the numerical experiment environment for exploring the
performance of our algorithm under various situations. For all the simulated
spectra, the Raman shift wavenumber range spanned across 400 cm−1 to
1600 cm−1 and contained 300 equally-spaced spectral points. We simulated
our studies under the same use case as in actual practice where a reference
measurement of the Raman spectrum for the target analyte at a known
concentration was first given and our goal was to quantify its concentration
in mixture measurements in the presence of other interfering analytes at
unknown concentrations.

For any simulated analyte including the target analyte, we modeled its
Raman spectrum at unit concentration by explicitly generating the Raman
peaks. The number of Raman peaks kP for the analyte was first deter-
mined. Afterwards, we generated the corresponding peak random variables
θP = (l,w,ρ, a) from predefined probability distributions. Here l, w, and
ρ are defined in the previous section and a ∈ [0, 1]kP are the peak ampli-
tudes at unit concentration. For all the peaks, l were independently and
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Figure 3: (a) Histogram for the widths of around 100 Raman peaks surveyed in common
materials and the PDF plot for an inverse-gamma probability distribution fit. This PDF
was used to generate the simulated Raman spectra in our studies. (b) Examples of the
simulated target analyte spectrum and 5 mixture spectra each with 5 randomly generated
interfering analytes. σ = 1 for all these simulated measurements.

uniformly generated across the available spectrum span, and ρ and a were
both independently and uniformly generated from range [0, 1]. For w to be
representable to actual Raman peaks encountered in practice, we surveyed
around 100 Raman peaks from 11 common materials including phenylala-
nine, tryptophan, tyrosine, alanine, glycine, glucose, lactic acid, acetic acid,
succinic acid, ethanol and water. We extracted the Raman peaks and their
widths and fitted these width samples with an inverse-gamma distribution.
The histogram for the peak width samples and the fitted probability density
function (PDF) are shown in Figure 3 (a). We denote this PDF as pg(w)
and sampled w independently from this probability distribution in our sim-
ulations. Once kP and θP were both determined, the Raman spectrum at
unit concentration could be represented as

f̃P (ν) =

kP∑

j=1

ajg(ν; θP,j)

with g(ν; θP,j) defined in Equation 2. Given f̃P (ν) for each analyte, we
could generate any mixture spectrum by adding together the spectral signals
from all the constituent analytes adjusted linearly by their respective con-
centrations in the mixture. In addition, we also added the baseline signal
represented by a low-order polynomial curve, where for each baseline curve,
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small random perturbations were added to the fitting points used to gener-
ate the polynomial curve to ensure a varying baseline across all the spectra.
At last, we added independent and additive Gaussian random noise with
standard deviation σ across the array to generate the final spectra. For the
reference target analyte spectrum, no spectral signal from any other analyte
was added, but we still included the baseline signal and the noise to resemble
an actual measurement.

In the following numerical experiments, we fixed the target analyte spec-
trum with kP = 10 randomly generated Raman peaks across all the mixture
studies. For each mixture, the number of co-existing interfering analytes
is denoted as NI . The number of Raman peaks was set as 10 for each in-
terfering analyte similar to that of the target analyte. The concentration
for each analyte in the mixture including the target analyte was uniformly
and randomly generated from range [0, 60]. For the reference target analyte
spectrum generation, we set its concentration at 30 and noise scale σ at 1.
The mixture spectra were all randomly and independently generated from
the process described above. Sample plots for the target analyte spectrum as
well as 5 mixture spectra each with 5 random interfering analytes are shown
in Figure 3 (b). σ = 1 for all the spectra in the figure.

3.2. Mixture Environment Study

With the above settings, we were able to validate our algorithm with
simulated target analyte and mixture spectra. As an illustrative example,
we show an estimation result in Figure 4. Figure 4 (a) and (b) show the
baseline estimation and peak decomposition results for a simulated reference
target analyte spectrum. The estimated peak variables obtained in this step
were further used to quantify the target analyte concentrations in mixtures,
as shown in Figure 4 (c) and (d). With the mixture spectrum, other than
the amplitude coefficient of the learned target analyte, a variable number of
Raman peaks were also fitted with the RJMCMC computation to explain the
peak signals from the rest of the interfering analytes. This ensured that all the
peaks appearing in the mixture spectrum were properly assigned to either
the target analyte or the interfering analytes, resulting in the most likely
amplitude estimation for the target analyte peaks in the mixture spectrum.
This in turn corresponded to the concentration of the target analyte in the
mixture. In the simulation as shown in Figure 4, σ = 1 for the target analyte
spectrum, NI = 5 and σ = 1 for the mixture spectrum. The concentration
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Figure 4: (a) and (b) Example plots for a simulated target analyte spectrum, and its base-
line estimation and peak decomposition results with our algorithm. (c) and (d) Example
plots for analyte assignment and peak decomposition for a mixture spectrum based on
peak variables obtained from (a) and (b) for the target analyte. The resulting spectrum
amplitude for the target analyte was subsequently used to estimate its concentration in
the mixture. In this simulation, σ = 1 for the target analyte spectrum, NI = 5 and σ = 1
for the mixture spectrum. The concentration for the target analyte in the mixture was 5
and the estimated concentration from our algorithm was 4.6

for the target analyte in the mixture was 5 and the estimated concentration
from our algorithm was 4.6.

Next we evaluated the generalized performance of our algorithm when
the number of co-existing interfering analytes NI and the additive Gaussian
noise scale σ varied. The noise scale σ was kept as 1 for the reference target
analyte spectrum. For each mixture test set with a fixed NI and σ, we
generated 1000 mixture spectra with randomly generated interfering analytes
and randomly generated concentrations for all the constituent analytes as
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Figure 5: (a) RMSE heatmap plot with varying NI and σ. (b) 1D plots showing the
RMSE change with fixed σ (above) and fixed NI (below). NI is the number of co-existing
interfering analytes in the mixture and σ is the standard deviation of the additive Gaussian
random noise. All RMSEs were calculated based on 1000 independently generated random
mixtures.

described previously. We used the root mean squared error (RMSE) between
our estimations and the ground truth values across all the 1000 measurements
as the performance metric. In total, we generated 35 test sets where we
varied NI from 1 to 7 and σ from 1 to 5, both in steps of 1. The resulting
RMSE across the 1000 test spectra for each set is shown in Table 1 and
the corresponding 2D heatmap is shown in Figure 3 (a). In addition, 1D
plots showing how RMSE changes with NI under fixed σ (and vice versa)
are shown in Figure 3 (b).

As seen from these results, overall our algorithm was able to provide a
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NI 1 2 3 4 5 6 7

σ = 1 1.0 1.4 2.2 3.3 4.1 5.5 6.4
σ = 2 1.6 1.9 2.9 4.0 4.8 6.1 7.5
σ = 3 1.9 2.6 3.9 5.0 6.2 7.3 8.1
σ = 4 2.2 3.4 4.8 5.9 7.2 7.9 9.3
σ = 5 3.0 4.3 5.4 6.7 7.7 8.5 9.9

Table 1: RMSE values with varying NI and σ (also plotted in Figure 5). NI is the number
of co-existing interfering analytes in the mixture and σ is the standard deviation of the
additive Gaussian random noise. All RMSEs were calculated based on 1000 independently
generated random mixtures.

consistent and reliable estimation for the target analyte concentration over
a wide range of test conditions. The RMSEs under all test cases were below
≈ 17% of the concentration variation from 0 to 60 for the target analyte. As
the measurement became noisier or more interfering analytes were added to
the mixture, more estimation error was observed. This is expected as the
effect of more noise or more interfering analytes increases the uncertainty of
correct analyte peak assignment and peak amplitude estimation. A closer
examination of error change with fixed NI or fixed σ in Figure 5 (b) indi-
cates a linear increase of error with the other variable. This suggests that a
simple linear model with RMSE being the dependent variable, and NI and
σ being the independent variables may be able to predict our algorithm’s
performance in a more generalized scenario. However, further research is
needed to rigorously analyze the error bound of our algorithm under these
situations.

3.3. Comparison Study

We further compared the performance of our algorithm against several
popular multivariate regression quantification algorithms in chemometrics.
Three algorithms including partial least squares regression (PLSR), principle
component regression (PCR) and ridge regression (RR) were selected for
this comparison study. The implementations for these algorithms were from
the scikit-learn 0.19.1 package with Python 3.6. An important distinction
between these multivariate regression algorithms and our algorithm is that
they are typically built based on a mixture training set with cross validation
for model selection. This requires pre-existing mixture spectra as well as the
corresponding ground truth reference measurements for the target analyte
in the mixtures. In practice, the ground truth reference measurements are
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usually obtained through a separate chemical assay such as high performance
liquid chromatography (HPLC). On the contrary, our algorithm only requires
the reference spectrum of the target analyte at a known concentration as prior
information before the actual estimation.

Our focus in this study is to investigate how the quantification results
compare across the different algorithms as the number of mixture training
data varies. This comparison study is relevant for practical applications as
mixture training data itself is often labor or resource intensive to acquire in
large volume since in addition to spectral data collection, special sample han-
dling or additional analytical measurement like HPLC is usually required. In
contrast, the reference spectrum of the target analyte required by our algo-
rithm is much easier to prepare in practice. For the three multivariate regres-
sion algorithms, we created training and test sets with a randomized process
similar to previously described, except for that now we kept the same fixed
mixture components across each training/test set with randomized concen-
trations. This is to ensure the proper settings for the multivariate regression
algorithms. For each dataset, we generated 100 samples in the test set and
varied the sample size in the training set from 6 to 24 in steps of 3. During
model training, we first performed 3-fold cross validation and parameter grid
search within the training set to choose the optimal hyper-parameters for
each algorithm (i.e., number of loading vectors in PLS, number of retaining
principle components in PCR, and the regularization parameter value in RR
respectively). We then refitted the model with the optimal hyper-parameter
on the entire training set and applied the resulting model on the test set to
calculate the RMSE for the dataset. Since these multivariate regression algo-
rithms have a high variance under the small training sample size regime, we
repeated this process a number of times on independently generated training
and test sets and report its performance based on aggregated statistics across
these independent runs. In Figure 6, we show the average RMSE across 100
independently simulated datasets for the three multivariate regression al-
gorithms as the number of mixture training data varies for different NI at
σ = 3. The error bars in the plots represent the standard deviation of RMSE
across the 100 independent runs. As comparison, we also show the average
RMSE for our algorithm across 10 test sets each consisting of 100 mixture
spectra in the same plots. The shaded area around the error line indicates
the standard deviation of RMSE across the 10 test sets. Since our algorithm
does not use the mixture data for training, the error line stays horizontal
across the axis for mixture training sample size.
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Figure 6: Error plots for our algorithm and three other multivariate regression algorithms
with various mixture training data sizes for different NI . The error bars in the bar plots
indicate the standard deviation of RMSE for the multivariate regression algorithms across
100 independently simulated datasets each consisting of 100 test spectra. The horizontal
shaded area around the dotted line indicates the standard deviation of RMSE for our
algorithm across 10 independently simulated datasets each consisting of 100 test spectra.
NI is the number of co-existing interfering analytes in the mixture in our simulations.
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Training Data Size 6 9 12 15 18 21 24

NI = 1

This Work 1.9± 0.3
PLSR 16.4± 4.4 10.2± 4.0 7.1± 3.2 4.8± 1.5 3.6± 1.0 3.1± 0.7 2.6± 0.7
PCR 14.1± 4.0 8.4± 4.5 4.5± 1.8 3.1± 1.1 2.6± 0.7 2.2± 0.5 1.9± 0.4
RR 11.0± 3.6 6.1± 2.4 4.2± 1.5 3.0± 0.9 2.5± 0.8 2.1± 0.4 1.9± 0.4

NI = 3

This Work 3.8± 0.4
PLSR 17.7± 4.0 13.7± 4.1 8.9± 3.7 6.2± 2.9 4.1± 1.4 3.5± 1.0 3.1± 0.9
PCR 18.4± 2.9 13.4± 4.8 6.9± 3.9 4.1± 1.3 3.2± 1.2 2.5± 0.6 2.3± 0.6
RR 14.5± 4.4 8.2± 3.0 5.2± 1.9 3.8± 1.3 3.0± 1.0 2.4± 0.6 2.1± 0.5

NI = 5

This Work 6.2± 0.7
PLSR 19.2± 4.0 16.5± 4.2 11.9± 4.8 7.6± 3.8 5.0± 1.7 4.2± 1.3 3.5± 0.9
PCR 19.2± 2.5 18.0± 3.6 11.6± 5.4 5.4± 2.7 3.8± 1.1 3.1± 1.0 2.7± 0.8
RR 17.3± 4.6 11.9± 4.2 7.5± 3.1 4.9± 1.7 3.7± 1.3 3.0± 0.9 2.5± 0.6

NI = 7

This Work 8.1± 0.8
PLSR 20.7± 3.9 17.4± 4.4 15.5± 4.1 10.3± 4.7 7.3± 4.0 5.2± 2.4 4.1± 1.2
PCR 19.6± 2.4 19.0± 2.6 15.3± 4.1 10.5± 4.3 5.5± 2.6 3.8± 1.2 3.3± 1.1
RR 19.1± 3.7 13.7± 3.9 9.4± 3.2 6.6± 2.4 4.9± 1.5 3.7± 1.1 2.9± 0.7

NI = 9

This Work 10.1± 0.9
PLSR 20.8± 3.4 19.0± 3.3 15.8± 3.8 13.0± 4.1 8.5± 4.1 6.7± 3.5 4.6± 1.7
PCR 20.2± 2.6 19.1± 2.3 18.1± 3.3 14.6± 4.4 9.7± 5.0 5.7± 2.8 4.0± 2.0
RR 20.6± 4.0 16.9± 3.8 12.0± 3.3 8.7± 3.0 6.0± 2.1 4.6± 1.4 3.6± 1.0

Table 2: RMSE values for our algorithm and three other multivariate regression algorithms
with various mixture training data sizes for different NI (also plotted in Figure 6). The
number before/after the ± sign indicates the mean/standard deviation of RMSE across
independent runs. NI is the number of co-existing interfering analytes in the mixture in
our simulations.

As shown in these plots, for all the three multivariate regression algo-
rithms, the prediction error for the test set decreases monotonically as a
function of the number of mixture training data. This is expected as with
more training data, it is more likely for these algorithms to effectively cap-
ture the sample subspace of the mixture data during the training process,
thereby increasing the regression accuracy. Under small training sample size
regime with less than ≈ 15 training spectra, there is a clear advantage of our
algorithm in terms of both estimation accuracy and consistency under all
testing situations. On the contrary, once there are enough training data to
accurately construct the regression models, our algorithm is unable to match
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their performance and the accuracy gap widens with more training data.
Under low interfering conditions, our algorithm remains competitive across
the range of the training sample size change. This is due to the fact that
with low interfering conditions, it is more likely to unambiguously resolve
analyte peak assignment and accurately estimate peak amplitudes, resulting
in near-optimal quantification.

Although a non-negligible accuracy gap is present for the high interfering
conditions in Figure 6, we note here that with perfect linearity and fixed
mixture components with concentrations generated from uniform distribu-
tions in both the training and test sets, our numerical experiment was con-
structed such that the conventional multivariate regression algorithms were
set to achieve near-optimal performance under situations with moderate-to-
large training data volume. In practice, apart from experimentation and
instrumentation-related issues as described in Wolthuis et al. (2006), the
performance of these multivariate regression algorithms are more critically
dependent on the quality of the training data, including the size of the train-
ing data as well as the measurement conditions for the training and test data.
In general it is desirable to select training data that are most representable
to the mixture conditions of the test data with sufficient concentration vari-
abilities for critical analytes (Whelan et al., 2012). These requirements can
be difficult to satisfy without substantial resources being allocated to the
training data collection and verification process. In addition, mixture envi-
ronment may introduce undesirable effect to the spectral signal. For exam-
ple, it is known that the Raman peak may shift with environmental pH for
many chemicals such as certain amino acids (Mesu et al., 2005). Peak shifts
introduce non-linearity into the spectral basis and may reduce estimation ac-
curacy for linear regression algorithms. It is therefore desirable to maintain
the pH of the environment for both the training and test data during the
measurement for PLSR-like linear regression algorithms (Lee et al., 2004).
In contrast, our algorithm is less sensitive to these various requirements so
long as the target analyte spectrum stays the same in the mixture compar-
ing to its reference measurement in native form. Therefore, in practice our
algorithm may still be comparable or even outperform these multivariate re-
gression algorithms with larger training data volume depending on the nature
of the measurement.
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Figure 7: (a) Glucose Raman spectrum measured at 40 mM with our system. (b) Peak
decomposition for the glucose Raman spectrum in (a). (c) Raman spectra of the CHO
culture supernatant for the Invitrogen (above) and Sanofi (below) CHO cell lines. Prepro-
cessings described in the text had been applied to the raw spectral data and water Raman
background was subtracted prior to the plots.

3.4. Experimental Data Study

Following the numerical experiments, we further tested our algorithm
on experimental Raman spectroscopy data collected for biopharmaceutical
applications. Spontaneous Raman spectra were collected to monitor the
concentration of the main carbon source, glucose, in the growth environment
during the fermentation process of Chinese hamster ovary (CHO) cells, which
are the most widely used expression systems for industry production of re-
combinant protein therapeutics. The initial CHO growth medium included
all the nutrients required by the cells such as the necessary carbon sources,
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nitrogen sources, salts and trace elements. As the fermentation advanced,
nutrients were consumed by the cells and metabolites were being produced
and released into the growth environment. Therefore, the culture environ-
ment represented a complex aqueous mixture and was changing constantly
over the fermentation process. Knowledge of key nutrients such as glucose
during the fermentation process through an on-line measurement such as
Raman spectroscopy can help regulate the fermentation condition for bet-
ter yield or reproducibility (Whelan et al., 2012). During our experiment,
supernatant from the culture material was collected on a daily basis. Ra-
man spectra of the collected supernatant were immediately measured with
a confocal Raman spectroscopy system at 830 nm excitation wavelength.
Meanwhile, HPLC measurement was used to obtain the reference concen-
trations for glucose in the supernatant samples. The instrumentation and
experimental setup are described in more details in Singh et al. (2015). Two
independent experiments with different CHO cell lines from Invitrogen and
Sanofi were carried out respectively. In addition to Raman spectra from the
supernatant samples, Raman spectrum for pure glucose dissolved in solution
was also collected with the same instrument.

The fermentation experiments lasted a total of 10 days for the Invitrogen
CHO cell line and 13 days for the Sanofi CHO cell line. Therefore, 10 and
13 supernatant Raman measurements were collected for these two cell lines
respectively. The reference Raman spectrum for pure glucose solution was
taken at 40 mM concentration. For each set of the Raman measurement, 10
repeated spectra were collected in sequence. As spectral preprocessing, we
first took the median across the 10 measurements for each spectral data point
for cosmic ray removal and noise reduction. Afterwards, a 21-point Savitzky-
Golay filter with a polynomial order of 3 was applied across the spectral
dimension to further enhance the spectral signal-to-noise ratio (SNR). A
spectral window from 350 cm−1 to 1650 cm−1, which covered all the major
Raman peaks in glucose and CHO Raman spectra, was selected for further
processing. Finally, a direct subtraction of Raman spectrum measured with
water was carried out to remove background Raman signals from water as
well as the optical components along the light path. The processed spectra
for glucose as well as the two CHO cell lines are shown in Figure 7. The
mixture environments for the two cell lines were different due to the fact
that the growth media for these two cell lines had different compositions.
This results in the differences in the corresponding Raman spectra shown
in Figure 7 (c). The overall baseline drifts over days for each cell line were
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likely caused by the changing refractive index of the supernatant due to its
composition change over the course of the fermentation process.
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Figure 8: Plots for glucose estimation with Raman spectroscopy for the Invitrogen (left)
and Sanofi (right) CHO cell line measurements. The estimated values were obtained as
the mean of 10 independent algorithm runs. The error bars indicate the standard error of
the mean (SEM) for the estimations across the runs. The reference values were obtained
with independent HPLC measurements.

Cell Line RMSE (mM) MAE (mM) R2

Invitrogen CHO 3.5 2.9 0.94
Sanofi CHO 4.2 3.3 0.89

Table 3: Estimation results for our algorithm with Raman spectroscopy for the Invitrogen
and Sanofi CHO cell line measurements.

We applied our algorithm with the same modeling parameter settings as
with the simulated data on the measured glucose and CHO Raman spectra.
The average of 10 algorithm runs is plotted in Figure 8 together with the
HPLC reference measurements for both cell lines. The error bars in the plots
indicate the standard error of the mean (SEM) of the estimation runs. The
HPLC measurements were estimated to have ±0.5 mM accuracy. Overall our
algorithm shows a consistent and reliable estimation of glucose, as shown in
Table 3, with RMSE of 3.5 mM, mean absolute error (MAE) of 2.9 mM,
and R2 of 0.94 for the Invitrogen CHO measurement, and RMSE of 4.2 mM,
MAE of 3.3 mM, and R2 of 0.89 for the Sanofi CHO measurement. The
error is comparable with the 3-σ limit of detection for pure glucose solu-
tion with our measurement system, which was ≈ 6 mM based on peak-SNR
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estimation. Comparing with conventional PLSR-like multivariate regression
algorithms, our algorithm only requires additional measurements of pure glu-
cose solution and water. Otherwise additional experimental runs need to be
planned in order to accumulate enough data for model training and vali-
dation. With resource-intensive applications like industrial fermentation, a
sample-efficient approach like our algorithm can significantly reduce the re-
search cost and development cycle. It is worth noting that it is also possible
to explicitly measure spectra for all constituent analytes in the mixture and
use ordinary least squares (OLS) regression to quantify analyte concentra-
tions without acquiring additional mixture training data (Lee et al., 2004;
Singh et al., 2015). However, the library spectra collection process can be
labor-intensive. In addition, it is usually difficult to know all the mixture
constituents ahead of time in a general setting. Therefore, in practice, our
algorithm has advantages in terms of both performance competitiveness as
well as looser requirement on training or additional measurements.

4. Discussions and Conclusions

In summary, we have developed a two-stage quantification algorithm with
the Bayesian modeling framework and the RJMCMC computation. We
tested our algorithm on both simulated as well as experimentally collected
spontaneous Raman spectroscopy datasets to validate its usage. The success-
ful quantification of glucose concentration in a complex aqueous cell culture
environment without any mixture training data suggests its promising po-
tential for applications involving Raman spectral analysis.

In practice, collecting high quality Raman spectroscopy training datasets
with reference measurements in sufficient volume for multivariate regression
algorithms can be a long, challenging, and labor/resource-intensive process
for many application disciplines. In addition, due to the intertwined nature
of statistical data analysis and experimental design in chemometrics, timely
quantitative feedback can often impact aspects of experimental design in a
significant way. An analyte quantification algorithm without any require-
ment on mixture training data such as the one developed in this work is
therefore desirable in many scenarios. As a result, we envision our algorithm
to be a complementary tool to the multivariate regression algorithms for
quantification analysis with Raman spectroscopy datasets.

Although RJMCMC computation was chosen as a building block for this
work, other statistical sampling methods or approximate Bayesian inference
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techniques with a suitable model selection criterion can be used within the
general two-stage processing framework as well. These methods can poten-
tially have advantages in terms of computational speed and therefore may be
suitable for scalable applications. We leave this aspect as a potential future
direction for our work.
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Appendix A. Gibbs Updates

With Gibbs sampling, g can be updated with an inverse-gamma distri-
bution as

g| · · · ∼ IG
(
ag +

k

2
, bg +

1

2σ2
(βk − βk,0)ᵀXᵀ

k(θP )Xk(θP )(βk − βk,0)

)
.

Λ can be updated as

Λ| · · · ∼ Ga(aΛ + kP , bΛ + 1).

Denoting β̂k = (Xᵀ
k(θP )Xk(θP ))−1 Xᵀ

k(θP )y as the maximum likelihood (ML)

estimation of βk and s2 = (y −Xk(θP )β̂k)
ᵀ(y −Xk(θP )β̂k) as the squared

residue of the ML estimation, we define

b̃σ2 =
s2

2
+

1

2(g + 1)
(β̂k − βk,0)ᵀXᵀ

k(θP )Xk(θP )(β̂k − βk,0). (A.1)

With this definition, our posterior for σ2 and βk can be updated as

σ2| · · · ∼ IG
(
N

2
, b̃σ2

)
,

and

βk|σ2, · · · ∼ N
(

1

g + 1

(
βk,0 + gβ̂k

)
,

g

g + 1
σ2 (Xᵀ

k(θP )Xk(θP ))−1

)
. (A.2)
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Appendix B. Calculation of the RJMCMCMove Acceptance Prob-
abilities

For within-dimensional moves where the dimensionality of the variable
space stays the same and k′P = kP , we can use symmetric random walks in
θP to generate θ′P . This is essentially the Metropolis algorithm and A(x,x′)
is the ratio between the posterior density function for the proposed state x′

and the current state x as

Awithin(x,x′) =

(
b̃′σ2

b̃σ2

)−N
2 kP∏

i=1

1[lmin,lmax](l
′
i)

[
kP∏

i=1

(
w′i
wi

)−aw−1
]

exp

{
−bw

kP∑

i=1

(
1

w′i
− 1

wi

)} kP∏

i=1

1[ρmin,ρmax](ρ
′
i).

For trans-dimensional sampling, four individual moves have been used in
this study, namely the birth, death, split, and merge moves. For the birth
move with k′P = kP + 1, a peak is generated with θb = (lb, wb, ρb), where
lb is randomly drawn from [lmin, lmax], wb is randomly drawn from density
function pwb

(wb), and ρb is randomly drawn from [ρmin, ρmax]. For pwb
(wb),

we choose to use the empirically fitted inverse-gamma distribution that is
described in Section 3.1. With this, Abirth(x,x′) can be shown as

Abirth(x,x′) =

(
b̃′σ2

b̃σ2

)−N
2

Λ

k′P
(g + 1)−

1
2
baww

Γ(aw)
w−aw−1
b e

− bw
wb

1

k′P

1

pwb
(wb)

.

Meanwhile, for the reversed process of randomly killing an existing peak
with peak variables θd = (ld, wd, ρd), we have k′P = kP − 1 and

Adeath(x,x′) =

(
b̃′σ2

b̃σ2

)−N
2
kP
Λ

(g + 1)
1
2

Γ(aw)

baww
waw+1
d e

bw
wd kP pwb

(wd).

For the split move, a random peak is selected and split into two ad-
jacent peaks. Assume that the selected peak has the peak variables as
θs = (ls, ws, ρs), we split the peak into two peaks with θ+

s = (l+s , w
+
s , ρ

+
s )

and θ−s = (l−s , w
−
s , ρ

−
s ) as

l+s = ls + δlul, l−s = ls − δlul,
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w+
s = ws + δwuw, w−s = ws − δwuw,

ρ+
s , ρ

−
s ∼ U(0, 1),

where δl and δw are the hyper-parameters to specify the variable split ranges,
ul ∼ U(0, 1), and uw ∼ U(−1, 1). The corresponding Asplit(x,x

′) with k′P =
kP + 1 is

Asplit(x,x
′) =

(
b̃′σ2

b̃σ2

)−N
2

Λ

k′P
(g + 1)−

1
2

1

∆l

baww
Γ(aw)

(
w+
s w
−
s

ws

)−aw−1

e
−bw

(
1

w+
s

+ 1

w−s
− 1

ws

)

8δlδw.

For the reversed merge move, the peak variables θ+
m = (l+m, w

+
m, ρ

+
m) and

θ−m = (l−m, w
−
m, ρ

−
m) from the two selected adjacent peaks are merged into

θm = (lm, wm, ρm) as

lm =
1

2

(
l+m + l−m

)
, wm =

1

2

(
w+
m + w−m

)
, ρm ∼ U(0, 1).

With k′P = kP − 1, Amerge(x,x
′) can be calculated as

Amerge(x,x
′) =

(
b̃′σ2

b̃σ2

)−N
2
kP
Λ

(g + 1)
1
2 ∆l

Γ(aw)

baww

(
w+
mw
−
m

wm

)aw+1

e
bw

(
1

w+
m

+ 1

w−m
− 1

wm

)
1

8δlδw
.

For the trans-dimensional move pairs, we make sure that the moves within
each pair are reversible. For the split and merge move pair, this means
that if a split move creates two peaks that are not adjacent in the current
spectrum, or if the selected adjacent peaks in the merge move have larger
variable differences in l and w than those that are allowed in the split move,
we would discard the proposal to ensure reversibility.
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