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Global demand for agricultural products is anticipated to 
increase rapidly in the next few decades, fuelled by a growing 
world population and greater per capita income1–3. However, 

biotic and abiotic environmental stresses, such as plant pathogens, 
sudden fluctuations in temperature, drought, soil salinity and toxic 
metal pollution, impair crop productivity and lead to significant 
losses in agricultural yield worldwide4,5. Crop pathogens and insect 
pests alone cause an estimated global yield loss of 11–30% for five 
major crops of global importance—wheat, rice, maize, potato and 
soybean—with the highest crop losses observed in regions already 
suffering from food insecurity6,7. The effects of climate change, 
which increase the frequency of extreme weather and plant disease 
outbreaks, impose additional pressure on agricultural innovation to 
meet the growing demand8–11. Against this backdrop, there has been 
an increasing demand for sustainable agricultural practices to pro-
duce crops with higher yield and quality12–14. Farming in controlled 
environments, such as urban containers or rooftop farms, has dem-
onstrated that the throughput of plant biomass can be significantly 
increased via the control of microclimates15,16. It has been noted that 
the outbreak of the COVID-19 pandemic in 2020 serves as a humble 
reminder of the pivotal role that urban farms can play in mitigating 
food supply disruptions within a city17. The growing importance of 
agriculture to meet the global food demand requires a concomitant 
increase in our understanding of how plants grow and adapt outside 
of the laboratory for these farming practices to be effective.

During the past few decades, significant progress has been 
made in understanding plant growth, signalling pathways and their 
adaptive responses to environmental stresses in the model plant 
Arabidopsis thaliana18–20. Detailed genomic data and quantitative 

trait loci (QTL) can be found in global repositories such as The 
Arabidopsis Information Resource (TAIR)21, providing a wealth of 
resources that enable versatile manipulation of A. thaliana genes to 
study plant development and physiology22,23. Transgenic plants with 
genetically encoded biosensors allow for in vivo study of the dynam-
ics of plant signalling molecules, which can be monitored with 
imaging platforms in a laboratory setting24. While these advances 
have been instrumental in advancing our understanding of plant 
science, our knowledge of plant behaviour in the field remains 
more limited. This is primarily due to the difficulty in extending 
genetic engineering approaches to study agriculturally important 
plants, and the dearth of alternative tools to probe the internal plant 
state25,26. Current genomic data in A. thaliana or unicellular green 
algae such as Chlamydomonas often cannot be used to predict or 
represent the complexities in agriculturally relevant crops27. There 
are genomic resources available for model crops such as rice (Oryza 
sativa), maize (Zea mays) and tomato (Solanum lycopersicum)28–30, 
but these denote only a handful of families and do not sufficiently 
represent the biodiversity of crops31. In addition, studying the sig-
nalling pathways and physiology of these crops under variable field 
conditions remains a longstanding challenge32. Measuring the level 
and temporal dynamics of metabolites in these crops typically relies 
on mass spectrometry-based techniques33–35. These methods are 
destructive and require laborious processing of multiple samples 
of plants per data point. Transcriptomic data of crops under field 
conditions remain scarce due to the complexity of such studies36. 
These challenges create a gap between our detailed understand-
ing of model plants and important agricultural targets for humans, 
contributing to our fragmentary knowledge of the underpinning 
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physiological processes that enable crops to adapt and grow in agri-
cultural conditions.

In recent years, there has been significant progress towards 
new innovative tools which can be applied to probe the spatiotem-
poral profile of plant chemical signals in model and non-model 
plants alike, providing a potential mechanistic bridge between 
the two. Such species-independent platforms can also be applied 
non-destructively and thus enable real-time investigation of plant 
physiology and signalling. This Perspective reviews the underly-
ing elements of such next-generation tools and discusses how they 
can bridge the gap between model plants in the laboratory and field 
application for agriculturally relevant plants. We also provide a 
future outlook for the integration of these tools with existing tech-
nologies to transform crop improvement and highlight what needs 
to be done to increase the utility and accessibility of these tools to 
the end-users.

Limitations in current plant phenotyping tools
Recent advances in imaging systems have led to the development 
of field-based phenotyping platforms to collect high-throughput 
trait measurements over a large field of view37–39. With these sys-
tems, plants’ physical and physiological features can be interrogated 
non-destructively40. Unmanned aerial vehicles (UAVs) now allow 
plant phenotyping and disease monitoring at the spatial resolution 
of an individual plant41,42. They can be paired with portable ana-
lytical devices and smartphone-based platforms to provide remote 
sensing data43,44. These technologies are currently being used to 
extract information about crop health and environmental stresses 
based on plant trait measurement in terms of chlorophyll con-
centration, water potential, leaf area and temperature45–48. While 
field-based phenotyping platforms convey useful information about 
crop health status and can be applied over a large area, their effective 
implementation often requires clear phenotypic manifestation that 
has already altered the plants’ spectral profile. The time lag between 
stress perception and phenotypic changes required for detection 
may render timely intervention difficult and reduce the effective-
ness of management decisions for certain or specific types of stress 
conditions. For instance, the measurement of hyperspectral images 
using drones may only show a warning when plants are already 
dehydrated or infected49. Yang et al. evaluated several examples of 
high-throughput phenotypic screening applied in A. thaliana or 
crops50. These methods include ground-based phenotyping in the 
field (for example, crop phenology recording system (CPRS)51 and 
field scanalyzer52), remote sensing via drones, post-harvest pheno-
typing (for example, seed-evaluation accelerator (SEA)53 and phe-
noSeeder54) and pocket phenotyping. Most of these methods were 
determined to be too costly at present, of low measuring speed in 
their current form or of limited resolution. In addition, they still 
rely on phenotypic changes such as a decrease in chlorophyll con-
centration and plant water potential, both of which can be caused 
by manifold stress types55. This type of detection method therefore 
lacks specificity, and early intervention to remediate the specific 
stresses remains challenging.

Another potential issue with the deployment of remote sensor 
technologies in a field setting is the question of how many sensor 
data points is enough to obtain a statistically representative view of 
the field. Varella et al. described the use of data acquisition within 
the precision farming context in a regular grid as well as directed 
grid format, depending on the end goal and applications56. Images 
collected by remote sensors make it possible to obtain a great deal of 
information about specific ‘targets’ on the surface, including quali-
tative and quantitative aspects, such as shape, geographical context, 
temporal behaviour, size, physical properties, intrinsic aspects and/
or state-specific factors. However, data management is still chal-
lenging, and calibration is almost always required to adjust for 
changes in canopy structure, camera geometries, incident sunlight 

angle and other uncontrollable environmental factors43. The large 
image data also necessitates complex data interpretation, limiting 
the automation of image processing57. Most commercial image anal-
ysis software and its built-in algorithms are not open source and 
cannot be modified easily across different platforms50. As such, they 
are often not accessible in their current form to smaller farms58, and 
the underlying concern of whether these techniques are capable of 
early diagnosis of stresses or nutrient deficiency persists.

Species-independent tools for early detection of plant 
stresses
Plants transmit various biotic and abiotic stress signals to reprogram 
the cellular transcriptional machinery and metabolic responses to 
enhance their fitness under stress59. Here, we briefly review two 
different technologies for monitoring these stress signals: nano-
sensors for measurements within the plant organs and electrical 
sensors for measuring surface biopotentials. Both of these sensors 
monitor stress signals at short time-scales—from seconds to min-
utes. At intermediate time-scales, the stress response manifests as 
changes in metabolites. Here, we consider spectroscopic monitoring 
of metabolites within the plant and volatile organics that the plants 
produce within hours as part of their stress response. While some 
biotic stresses such as vector-borne viruses and vascular pathogens 
require only a short window for infection with very limited man-
agement options60,61, the information obtained from nanoscale and 
spectroscopic measurements may be used to aid remediation strate-
gies to mitigate certain stresses such as water and nutrient availabil-
ity, as well as moderate changes in the abiotic environment.

Perception of stress stimuli involves the propagation of 
short-lived signalling molecules, such as reactive oxygen species 
(ROS) and intracellular calcium (Ca2+), and phytohormones, such 
as jasmonates, salicylates, auxins, gibberellins and abscisic acid62–64. 
Signal transduction triggers a cascade of transcriptional repro-
gramming that changes cellular development, plant growth and 
behaviour65,66. Key signalling molecules and phytohormones are 
conserved across species, albeit with potentially different spatio-
temporal dynamics67–70. Monitoring the evolution of plant signal-
ling molecules as they are generated upon stress perception has the 
potential to enable early diagnostics of environmental or biological 
stressors. If these indicators can be intercepted before the manifes-
tation of stress-induced phenotypic changes, there is potential for 
intervention to prevent the yield loss and reduction in crop quality. 
This will necessarily depend on the type and magnitude of stress as 
well as the availability of management options. While detecting a 
static concentration of a signalling molecule may give an indication 
of plant health, such information is not as useful as the concentra-
tion profile of the signalling molecule in space and time. Hence, 
to develop an effective tool capable of studying plant physiology 
and reporting stress events, both the sensitivity and the temporal 
resolution of the platform have to be considered. In addition, these 
tools have to be stable in terms of their structural integrity and per-
formance, and they should give a clear output that can be easily 
interpreted with portable electronics or devices commonly used by 
agricultural end-users.

There have been some promising developments in the engineer-
ing and application of new analytical tools to study plants in agri-
culturally relevant settings. Nanomaterials, defined as inorganic or 
organic matter with dimensions smaller than 100 nm, have unique 
physical and optical properties that can be harnessed for in vivo 
detection of plant signalling molecules71,72. Some nanoparticles, 
such as single-walled carbon nanotubes (SWNT), have photostable 
emission in the near-infrared region (NIR) away from the chlo-
rophyll autoflorescence73. The sensitivity and selectivity of nano-
materials can also be engineered via facile modification of their  
surface chemistry71,74. These nanosensors can provide access to 
real-time information about plant health through non-destructive 
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monitoring of endogenous signalling molecules and plant hor-
mones. They can also be introduced to a wide range of plant spe-
cies currently not amenable to genetic modification75. We recently 
demonstrated the application of SWNT to study stress-induced 
hydrogen peroxide (H2O2) signalling waves in seven different plant 
species76. Nanosensors were embedded into leaf mesophyll cells via 
needleless syringe infiltration. Upon contact with H2O2, the nano-
sensors’ NIR fluorescence intensity was quenched reversibly, and 
the intensity modulation could be monitored at a remote distance 
in real time (Fig. 1a). The wave characteristics of the H2O2 signalling  

pathway probed by the nanosensors were found to be different 
across species and specific for the stresses that plants perceived  
(Fig. 1b). Such demonstration showcases the utility of species- 
agnostic tools to help elucidate the complex plant signalling pathways 
during growth and acclimation to external conditions in both model 
and non-model plants. In another study, peptide-functionalized 
SWNT were engineered to serve as an optical reporter of nitroaro-
matic concentrations in a spinach (Spinacia oleracea) plant  
(Fig. 1c)77. Quantum dots are another class of versatile nanomate-
rials with tuneable emission intensity, ranging from the visible to 
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Fig. 1 | First-generation examples of optical nanosensors and Raman technology for non-destructive monitoring of plant stresses. a, bright-field image 
of plant infiltrated with SWNT nanosensors (left panel). Red and blue arrows indicate active and reference nanosensors, respectively; the dashed line 
represents the wounding position. Scale bar, 5 mm. False-coloured images show the post-wounding sensor dynamics tracking the transient H2O2 wave 
(right panel). b, Nanosensors’ response to wounding, flg22, high-light and heat-stress treatments. The black arrow represents the time point at which 
stress is applied (t = 10 min), except high-light stress, which was applied for 2 min (dashed region). Panels a and b reproduced from ref. 76, Springer 
Nature Ltd. c, Schematic of the experimental setup for the standoff detection of nitroaromatics in plants using nanobionics. The information from the 
nanosensors embedded on the plant leaf is relayed to a portable Raspberry Pi-based electronic device. Adapted from ref. 77, Springer Nature Ltd. d, 
Morphological phenotype of two-week-old seedlings of pak choi (Brassica rapa chinensis) and choy sum (Brassica rapa var. parachinensis) transferred into 
nitrogen-sufficient (+N) or nitrogen-deficient (–N) hydroponic medium, grown for 3 d and studied by Raman spectroscopy. Scale bars, 1 cm. e, Raman 
spectral analysis of early nitrogen deficiency in leafy vegetables, pak choi and choy sum. f, Fibre-optic-enabled Raman spectroscopy system used for field 
portable applications. Panels d–f reproduced from ref. 94 under a Creative Commons licence (http://creativecommons.org/licenses/by/4.0/).
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the NIR78. Functionalized quantum dots have been shown to detect 
exogenously introduced glucose in A. thaliana and algae C. zeylan-
ica79. The information obtained by SWNT- and quantum dot-based 
nanosensors can further be conveyed using a portable Raspberry 
Pi-based camera and platform at remote distances. Fluorescent car-
bon dots have emerged as a promising substitute to conventional 
quantum dots due to their excellent biocompatibility80. Carbon dots 
have been used to detect heavy metal pollution in the cell walls of 
onion81. While these studies were conducted in laboratory settings, 
they highlight proven possibilities for next-generation technologies 
to empower future agricultural practices.

An emerging class of sensor technologies that can be conve-
niently applied to monitor plant growth and dynamics is wear-
able sensors. The measurement of bioelectric potential changes in 
plants can be used to detect changes in environmental factors such 
as atmospheric pressure, temperature, humidity and light inten-
sity82. Ochiai et al. compared commercially available boron-doped 
diamond (BDD), silver and platinum plate electrodes for measur-
ing electrochemical signals in potted Opuntia hybrid plants and 
also in three different ground-planted trees83. The BDD electrodes 
were found to be 4–7 times more sensitive to bioelectric potential 
changes in potted Opuntia hybrid plants compared to platinum or 
silver electrodes. Similarly, for ground-planted trees, where bioelec-
tric potential change was induced by changing temperature and 
humidity for months without replacing, removing or changing elec-
trodes, BDD electrodes were 5–10 times more sensitive than plati-
num electrodes. Thus, the BDD electrode-based monitoring system 
has the potential to measure live plant growth and may represent 
a promising warning system for suddenly changing environmental 
conditions.

The stress signals that have been discussed previously in this 
section trigger metabolic responses in the plant. Metabolomics 
is becoming increasingly common in plant physiology and bio-
chemistry, and to date has been applied to studies dealing with 
plant stresses including water, temperature, light, nutrient, oxida-
tive and biotic stresses84–87. To identify, quantify and character-
ize metabolites requires high-throughput analytical technologies. 
Several techniques including gas chromatography–mass spectrom-
etry (GC–MS), liquid chromatography (LC)–MS, capillary electro-
phoresis (CE)–MS and nuclear magnetic resonance spectroscopy 
(NMR) are commonly used in plant metabolomics research88–91. 
Unfortunately, these widely used techniques require sample prepa-
ration and are not suitable for in vivo monitoring of metabolites. If 
our goal is to monitor plant stress to optimize crop yield, techniques 
that require destruction of the plant and lengthy sample preparation 
fail to realize the potential of metabolomics to provide real-time 
phenotypic signatures.

Raman spectroscopy enables non-destructive biochemical detec-
tion capable of interrogating multiple molecular species simultane-
ously. As an optical tool, Raman spectroscopy can be considered 
as an extension of the imaging techniques that are already widely 
deployed in field-based phenotyping. However, Raman spectros-
copy allows for significantly greater chemical specificity. To date, 
several groups have applied Raman spectroscopy for monitoring 
biotic and abiotic stresses. Early reports utilize Raman spectroscopy 
for measurements of metabolites such as carotenoids and antho-
cyanins as markers for abiotic stress in plants—including drought, 
saline, light and heat stress92. Similarly, the carotenoid peaks were 
observed as early stress markers for viral infections93. While these 
studies were performed on a few specimens of an ornamental 
plant (coleus lime or Abutilon hybridum), we can imagine that a 
high-throughput tool for monitoring plant stress in real time could 
benefit both plant biologists and farmers. Indeed, we have recently 
observed the nitrate peak in vegetable crops using NIR Raman 
spectroscopy94. Early diagnosis and specific diagnosis of nitrogen 
deficiency was observed in A. thaliana as well pak choi (Brassica 

rapa chinensis) and choy sum (Brassica rapa var. parachinensis). 
In all cases, the nitrate Raman line was observed to decrease well 
before any changes in leaf reflectance or chlorophyll concentration  
(Fig. 1d–f). These changes were observed early enough for nitrogen 
addition to recover the full yield of the leafy vegetables. Similarly, 
early detection of infection in important crop species by Raman 
spectroscopy has progressed rapidly in the last few years95. Since 
Raman is probing the optical properties of the plant leaf, it will 
likely be feasible to perform these measurements remotely from dis-
tances as great as 100 m (refs. 96,97). As the cost of Raman hardware 
declines, metabolite measurements could become an everyday part 
of agriculture and the food supply—from farm to market to table.

Plants also emit characteristic volatile organic compounds 
(VOCs), which play a pivotal role in plant growth, communication 
and defence98,99. VOC profiling can give an indication of the health 
status of high-value commodity crops and provide new insights into 
interplant and plant-to-insect communication100. Polymeric sor-
bent traps are usually employed to concentrate VOCs before they 
are sent to the laboratory for thermal desorption and analysis with 
MS-based systems101. A trace amount of VOCs can be detected with 
this platform, but it requires bulky and expensive instrumentation 
for direct in-field analysis100. Zheng et al. recently introduced the 
integration of plasmonic nanoparticles in a smartphone-based VOC 
fingerprinting platform for the detection of Phytophthora infestans 
in tomato plants102. The sensor array is composed of gold nanoparti-
cles with different aspect ratios which aggregate upon VOC contact, 
triggering a change in their colorimetric profile. When tested in a 
greenhouse setting, the smartphone-based sensor array was able to 
capture the pathogen-induced VOC changes in tomato leaves as 
early as two days post-infection before visible symptoms appeared. 
In another demonstration, Fong et al. reported a SWNT-based 
chemiresistive sensor capable of detecting 15 ppb concentration of 
ethylene within seconds of exposure103. Ethylene is an important 
VOC that is central to the regulation of plant development, ranging 
from seed germination to fruit ripening and senescence. The sensor 
was able to monitor dynamic changes in trace amounts of ethylene 
during the senescence of carnation and lisianthus flowers. Artificial 
electronic nose (E-nose) platforms are also being developed for 
rapid, non-invasive monitoring of plant VOCs104. They comprise of 
a sensor array, signal conditioning circuit and pattern recognition 
algorithms. However, issues related to selectivity and the effect of 
environmental conditions necessitates further improvement to such 
sensor systems for optimal detection. VOC sensors do not need to 
be implanted within the plant tissues, but they have to show high 
sensitivity to capture trace amounts of VOCs commonly emitted by 
plants. In addition, their long-term stability, reproducibility, struc-
tural integrity and robustness will have to be considered for in-field 
analysis.

New opportunities afforded by species-independent tools
We propose that the newly developed tools introduced above can 
facilitate a new understanding of crop behaviour and dynamics 
in agricultural settings. The adoption of the aforementioned tech-
nologies in the study of model plants and their genetic variants 
can help validate the utility of these tools. In addition, they can 
also complement research in plant biology, especially in instances 
where genetically encoded biosensors are limited in utility; for 
example, in multiplexing and imaging of various molecules simul-
taneously. CRISPR–Cas9 systems, especially those that can pro-
duce transgene-free genome-edited crops and thus circumvent 
regulatory concerns in many countries105,106, could also be used in 
concert with advanced analytical technologies to aid trait identifica-
tion and alteration for improved crop performance. Enhancing our 
basic understanding of plant science can bridge the gap between 
model and non-model plants, and ultimately help to extend the 
applicability of these tools for plants outside of laboratory settings. 
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Machine-learning techniques and mathematical models, both for-
mulated based on the information gathered by species-agnostic 
tools, can potentially allow the extension of findings across spe-
cies (Fig. 2a). This can yield new insights previously inaccessible 
through traditional plant biology approaches. For example, the 
speed and characteristics of a wound-induced H2O2 wave probed 
by nanosensors appeared to be controlled by the antioxidant capac-
ity of different plant species76. Machine-learning algorithms can be 
similarly applied to the readings obtained by nanosensors or spec-
troscopy tools to predict plant behaviour across species107.

Another potential opportunity of these newly developed tools 
is afforded by their ability to probe systemic signalling within the 
plants, often in real time. As these technologies are non-destructive 
and can be used to extract information from the plants at a 

whole-plant resolution, we can study how local stimuli induce 
the propagation of signals from one organ or organelle to another 
within the same plant, organ or cell. Such investigations can reveal 
many of the underlying mechanisms that mediate systemic signal-
ling108. These tools also enable the same organ or cell to be studied 
over time, circumventing the problem of plant-to-plant variations 
in data collection and analysis109. Studying the dynamics of phy-
tohormones in non-model plants with nanosensors can provide 
insights into how these plants grow and adapt in agricultural set-
tings. Their temporal and spatial profile can be monitored to report 
the onset of resource deficiency and stresses. These phytohormones 
often exist in low, transient concentrations and vary according to 
spatial locations within the plant. Furthermore, there are often 
various isomers of phytohormones, rendering their detection via 
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conventional methods, such as analysis by high-performance liq-
uid chromatography/gas chromatography and serological assays, 
difficult100. By contrast, field-deployable miniaturized sensors could 
be cost-effective diagnostic tools to monitor plant health and devel-
opment. The use of engineered nanoparticles, located within the 
plant tissues and subcellular compartments, may enable biochemi-
cal pathways to be studied selectively with a greater precision and 
at a shorter timescale than existing approaches71,110. Decoding plant 
signalling pathways non-destructively for agriculturally important 
plants as well as model systems ubiquitously explored in plant biol-
ogy will lead to radically new agricultural technologies: from rapid 
plant phenotyping to early diagnostics of plant health status.

In addition, the physical and chemical properties of nanopar-
ticles can also be engineered to tune their localization within plant 
cells. Nanoparticles with dimensions below the size exclusion limit 
of the cell wall (~20–50 nm) have the ability to access the plant 
cell interior111. It has been shown that the zeta potential and size 
of nanoparticles govern their subcellular localization within plant 
cells, enabling the specific targeting of various compartments such 
as the chloroplasts and the cytosol75,112,113. Furthermore, targeting 
moieties can be grafted onto the surface of nanostructures to direct 
their localization to the nucleus, mitochondria or other organelles 
within a plant cell114,115. While these strategies can be rationally 
employed to control nanoparticle transport into specific organelles, 
biomolecules present in the plant biological environment can rap-
idly adsorb onto nanoparticle surfaces in an energetically favour-
able process and alter the nanoparticle surface characteristics116,117.  
The new corona formation due to adsorbed proteins can unpredict-
ably change nanoparticle identity and localization118,119. The inter-
action between proteins and other biomolecules on nanoparticle 
corona formation in the plant biological environment needs to be 
further investigated. The targeted delivery of nanosensors to differ-
ent plant organelles will help elucidate the subcellular dynamics of 
signalling molecules within model plants as well as agriculturally 
relevant crops. The ability to precisely deliver nanosensors to spe-
cific plant compartments can also enable multiplexing of different 
molecules to help untangle the complex interplay of plant signalling 
pathways.

In addition to monitoring the phytohormones and/or other 
growth-promoting metabolites, we also propose a holistic approach 
to apply multi-dimensional spectral analyses to the phytobiome and 
the soil or rhizospheric microbiome, both of which are important 
contributors to plant phenotypes and crop yields. The crop yield is 
a complex phenotype, and such tripartite interactions that consider 
plant metabolism, soil and microbiota not only influence proper 
growth and development in plants, but also the overall health and 
metabolic resilience. Microbiota associated with the rhizosphere 
and phyllosphere contribute significantly to plant growth and to tol-
erance or resistance to biotic and abiotic stresses120–122. Probing the 
plant-associated microbiome community can provide a wealth of 
information about the crop development and health123–125. The fluo-
rescent nanosensors described in the previous section can be easily 
interfaced within a fibre optic platform, creating an electrode-like 
or optode probe for the detection of local nutrients, pollutants and 
specific microorganisms in the soil. In this configuration, nanosen-
sors are mounted at the tip of an optical fibre which performs both 
the excitation and signal collection for fluorescence monitoring, as 
we and others have shown recently126,127. The nanosensor–optode 
form factor has a high mechanical flexibility and can be compactly 
integrated into a portable detection platform that can utilize the 
same hardware as Raman spectroscopy. This presents a promising 
approach for multi-dimensional spectral monitoring of soil in the 
field. We anticipate that Raman microspectroscopy and imaging 
will prove to be useful tools to identify chemical signatures and soil 
constituents128 associated with the beneficial phytobiome systems 
that promote plant growth. In addition, a portable fluorescence 

imaging system has been developed for automated phenotyping 
of root architecture in the field129. The analytical technology plat-
forms highlighted here could be leveraged to probe ongoing soil 
health, phenotype root architecture directly and elucidate beneficial 
microbial traits. Non-invasive soil phenotyping allows plant and 
microbial traits to be measured on the same population over time, 
and offers opportunities for simultaneous monitoring of shoot and 
root growth130. Such an approach may help identify and utilize the 
critical growth-promoting metabolites as well as the crucial meta-
bolic hubs towards improved crop yield and resilience131. Likewise, 
surface-enhanced Raman spectroscopy could be applied in con-
junction with detailed metabolomics to identify the molecular and 
chemical basis of plant–soil–microbiome interactions132,133, thus 
enabling the development of knowledge-based intelligent solutions 
for precision agriculture.

An effective implementation of nanosensors and spectroscopy 
platforms in the field will require a concomitant development in 
low-cost and high-throughput image analysis tools for plant phe-
notyping. Such tools can be used to interpret the sensor readings 
with high quantitative and temporal resolution. For example, the 
recently introduced PlantCV, an open-source image analysis soft-
ware for plant phenotyping, can correlate plant phenotypes with 
stress treatments using low-cost electronics in an automated fash-
ion134. By coupling advances in image analysis algorithms with new 
sensor technologies, we can extract information about not just the 
visible plant phenotype but also the internal metabolite dynamics 
for early diagnosis. Recent demonstrations that optical signals from 
nanosensors can be read out with a Raspberry Pi platform high-
light the potential ability of these promising technologies to inte-
grate with existing portable platforms76,77. Indeed, coupling remote 
sensing technologies with micro or nanosensors which are easy 
to use and able to provide the required precision would be key to 
making remote sensor platforms useful. Developing an integrated 
platform that combines species-agnostic tools with advanced imag-
ing platforms and data analysis packages will enable a large-scale 
field data collection at high spatial and temporal resolutions for 
non-destructive plant phenotyping and early diagnostics. While 
some progress has been made in demonstrating the development 
and utility of these tools, successfully integrating all the different 
components into an integrated platform that is reliable, affordable 
and accessible for end-users remains a fundamental challenge.

New analytics to advance urban farming
As a product of agriculture, the plant is itself a highly complex 
machine within a dynamic ecosystem. The fundamental study of 
its internal workings, hydraulics, chemical signalling and genetic 
pathways remains an important and emerging scientific enterprise. 
Moreover, there are diverse microbial communities in the soil and 
plant tissues which promote plant development through improved 
nutrient acquisition, accelerated growth and increased host resis-
tance against stresses135,136. Handheld Raman spectrometers that 
allow a form of laser-induced, biochemical fingerprinting of living 
plants yield access to the internal workings of plants with unprec-
edented precision. Similarly, nanotechnology-enabled molecular 
recognition allows measurement of plant signalling hormones and 
stress responses in a way that can ‘decode’ the inner communication 
within the plant itself. They can also be employed to characterize 
rhizospheric and phyllospheric microbiota. Such modern tools and 
related technologies may open possibilities for long sought-after 
feedback control schemes to accelerate and improve plant growth, 
yield, nutrition and culinary properties in urban farm settings  
(Fig. 2b). Water, light and fertilizer are all example inputs whose 
amounts and applied durations can be digitally controlled subject to 
internal responses within the plant itself. The result can be optimal 
growth conditions for potentially any plant, as well as the seamless 
transition from one crop to another in successive growth cycles. 
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This accelerated productivity combined with extreme modular-
ity in farming could be highly enabling for next-generation urban 
farming.

An opportunity for advanced analytics that is important in 
the context of high-density farming, and urban farming in par-
ticular, is in addressing the shade avoidance syndrome (SAS). This  
adaptive response in plants is triggered to overcome shade condi-
tions caused by surrounding vegetation and includes stem and 
petiole elongation, hyponastic leaves, reduced leaf development, 
early flowering and increased senescence137. The phenotypic and 
physiological changes of SAS are detrimental to agriculture, and 
specifically urban farming due to its irreversibility138,139. Due to the 
morphological plasticity of plants during SAS, early detection and 
real-time monitoring of SAS are crucial for sustainable agriculture. 
Advanced analytical tools, such as Raman spectroscopy and nano-
sensor technology, could augment or replace conventional assess-
ments of SAS, which are mostly restricted to the genetic level and 
the gene expression of shade-induced genes (AtHB2, AtHB4, PIL1 
and so on)140–142.

Technological status and economic potential of advanced 
analytical tools
Biotic and abiotic stresses cause substantial losses in crop yield  
and the economic value of agricultural products. Plant diseases  
and pests cause an estimated average yield loss of 30.0% in rice, 
22.6% in maize, 21.5% in wheat, 21.4% in soybean and 17.2% 
in potato worldwide6. Global wheat production is predicted to 
decrease by 6% for each degree Celsius rise in temperature143. 
Drought alone is responsible for more substantial crop losses annu-
ally than all pathogens combined, with approximately $30 billion 
worth of global losses in crop production over the past decade5. 
The severity and frequency of these stresses on crop production are 
further exacerbated by climate change144–146. Advanced analytical 
tools highlighted here can help offset the economic losses caused 
by these factors through early stress detection in crops. However, 
to facilitate widespread adoption of these technologies in agricul-
ture, their economic potential and reliability need to be validated 
to ensure that they remain affordable and more effective than the 
existing approaches.

The economics of deploying species-independent platforms 
in agriculture depends on a number of factors such as the type of 
agriculture (for example, open-field agriculture or urban farms), 
crop selection (high-value produce or more commodity staples) as 
well as the nature of the analytical tools employed. Here, we illus-
trate some cases whereby the use of sensors may be economically 
advantageous. The profitability of portable Raman spectroscopy 
for precision agriculture applications can be modelled on previ-
ous work studying the economic benefits of portable reflectance 
analysers for inferring crop yield and nitrogen demand. Portable 
reflectance sensors (for example, Greenseeker) have been used to 
guide the variable rate application (VRA) of nitrogen fertilizer. 
Previous studies have demonstrated a value for precision delivery 
of nitrogen fertilizers to be $16–29 ha–1 for a commodity crop such 
as wheat147. In practice, reflectance analysis is an imperfect assay for 
plant nitrogen, as the reflectance also changes with temperature, 
water availability and time within the growing season. By contrast, 
Raman spectroscopy can be employed to specifically measure nitro-
gen status in plants94. Today, a portable Raman analyser may cost 
approximately $12,000. If a consulting engineering firm were to 
provide services at the cost of their technical labour ($16 h–1) and 
capital depreciation (4-yr depreciation, 300 h annually for measure-
ments with 20% residual value), Raman analysis would cost $8 ha–1, 
assuming 15 min of operation per hectare (10 min of walking and 
5 min of Raman acquisition). The economic benefit ($16–29 ha–1) 
relative to the cost ($12 ha–1) is significant, even for a commodity 
such as wheat and assuming a utilization of only 300 h annually.  

In practice, higher value crops such as vegetables and more 
demanding schedules (900 h annually) might be more reflective 
of the margins for a mature business employing Raman spectros-
copy for precision agriculture. Within the urban farming context, 
the use of non-destructive sensors has allowed companies such as 
AeroFarms to apply fertilizers frequently and in small doses, adjust-
ing along the way to optimize plant growth. Such adjustments may 
be made as frequently as 15-min intervals, coupled with sensors 
which tightly control humidity and water consumption, driving cost 
efficiencies in water and fertilizer use. The fluorescence of optical 
nanosensors can also be monitored with a Raman spectrometer148. 
As such, the same portable instrument can be used to obtain both 
the Raman spectra and the nanosensor information at no extra cost. 
Furthermore, advanced analytical tools not only drive efficiencies 
from the cost perspective, such as reduced fertilizer application, but 
they can also benefit the revenue side from increased product qual-
ity. For instance, sensors that can detect optimal harvesting condi-
tions to tune the flavour profiles of crops149–151 may translate into 
products that consumers are willing to pay a price premium for, 
further enhancing the value proposition for targeted sensor deploy-
ment within different agricultural settings.

In addition to profitability, the technological robustness and sen-
sitivity of these potentially disruptive technologies need to be fur-
ther evaluated for field applications. While some of the described 
tools have been shown to work in laboratory or greenhouse con-
ditions76,77,94,102, the complex and constantly changing environment 
in the field poses a different set of challenges and opportunities to 
validate the performance of these technologies. For example, the 
stability, sensitivity and selectivity of nanosensors may be affected 
by weather, plant developmental stage and soil types. Plant scientists 
and researchers have an important role to validate the performance 
of these tools under variable conditions in the laboratory in parallel 
to their application in the field. The variability in adaptive responses 
between plant species and subspecies to stresses, the incidence of 
multiple stresses as well as the biodiversity of pathogens, insects 
and microbes further add to complexity of agricultural systems 
in which the reliability of species-independent tools needs to be 
assessed152,153. Multiplexing different sensors and analytical tools can 
help increase the precision of crop diagnostics, but this will increase 
the operational cost for growers, and the optimal combinations may 
vary from one field to another. Systems-level evaluations can be use-
ful to identify the optimal design space in which the accuracy and 
economic impact of the deployable platforms can be maximized154. 
The impact of different soil characteristics and climate conditions 
on the linearity and robustness of the proposed tools can be assessed 
through large-scale field data collection at geographically diverse 
sites. Data from such studies can also inform further redesign and 
refinement of these technologies to ensure their effective deploy-
ment in agriculture155.

With these new tools, questions arise as to how many sensors 
must be deployed to monitor multiple hectares of plants and at what 
frequency. In the absence of any additional information, except that 
such plants follow a distribution in desired traits or status, the prob-
lem is one for basic statistics. However, this neglects the prior infor-
mation that researchers will collect though the steady deployment 
and data collection using these tools. Mathematical models and 
machine learning that leverage data analytics form an essential part 
of the sensors themselves. When combined, new opportunities will 
likely emerge. The monitoring of a much smaller cohort of plants 
could inform the field. The concept of strategically placed ‘sentinel 
plants’ can dramatically reduce the necessary deployment scale156,157. 
Such an approach can be complimented by the use of drone technol-
ogy to check and update such models without the burden of scan-
ning the entire plantation158,159. In contrast, the urban farm does not 
have the same challenges with geographical scale, but will benefit 
from the same overall approach.
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Conclusion and outlook
This Perspective highlights that we now have first-generation exam-
ples and promising concepts of how a new generation of tools can 
revolutionize plant science and agriculture. The development of 
sensors and non-invasive technology to study plant signalling and 
physiology in situ would now allow us to extend investigations nor-
mally conducted under laboratory conditions to field-grown crops, 
making use of the knowledge base accumulated using model plants 
such as Arabidopsis, rice and tomato. With the advent of advanced 
analytical tools, the challenge becomes the translation of the raw 
data collected into meaningful information for the farmers to make 
profitable decisions. The addition of Internet of Things (IoT) to sen-
sors, big data analysis and incorporation of artificial intelligence 
techniques will promote data-driven agriculture to enable sustain-
able farming160. Furthermore, for these species-independent plat-
forms to be accessible and affordable to agricultural end-users, there 
must be an increased collaboration among engineers, data scien-
tists and plant biologists. There has to be a change in paradigm and 
mind-set that these fields are separate to encourage more collabora-
tion between these different groups. Sustained engagement with the 
public, farmers and plant breeding programmes can help accelerate 
the acceptance and integration of these tools in everyday farming 
practices. It is paramount that more testing of species-independent 
tools is conducted under field conditions, with critical evaluations of 
their technical robustness and economic potential to ensure sustain-
able implementation of these technologies in tomorrow’s agriculture.
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