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We report a waveguide-coupled photodetector realized in a standard CMOS foundry without requir-

ing changes to the process flow (zero-change CMOS). The photodetector exploits carrier generation

in the silicon-germanium normally utilized as stressor in pFETs. The measured responsivity and 3 dB

bandwidth are of 0.023 A/W at a wavelength of 1180 nm and 32 GHz at �1 V bias (18 GHz at 0 V

bias). The dark current is less than 10 pA and the dynamic range is larger than 60 dB. VC 2015
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927393]

Monolithic integration of million-transistors circuits

with photonic components is an enabling technology for the

high-performance computers (HPC) foreseen in the next

decade.1 However, several materials, processes, or geome-

tries generally utilized for building photonic components

are not available in advanced electronic foundries. For

example, even if optical detection can be achieved by mid-

band gap absorption in doped or poly-crystalline silicon

waveguides or by internal photoemission absorption in

Schottky junctions,2,3 the most typical approach consists of

incorporating pure germanium on silicon.4–6 As a conse-

quence, a complete toolbox has so far been demonstrated

only in modified CMOS flows4,5 and rely on the 90 nm or

older nodes, which are no longer utilized for building HPC

microprocessors.7 The modification of existing nodes,

moreover, requires costly process development and chal-

lenges fabrication yield.8

An alternative approach consists of designing photonic

components within existing CMOS foundries without violat-

ing the original design rules and without requiring any

change of the fabrication process—a term that we named

“zero-change CMOS photonics.”9 In this approach, the fabri-

cation yield of the transistors remains unaltered and enables

the realization of electronic circuits of the complexity of

microprocessors. Discrete optical components, such as verti-

cally coupled photodetectors, have been fabricated in zero-

change CMOS in various foundries.10,11 Within the 45 nm,

12SOI silicon-on-insulator CMOS node of IBM, we have

recently demonstrated zero-change fabrication of grating

couplers (GCs), waveguide propagation losses of less than

5 dB/cm in the 1170 nm–1250 nm range, and 5 Gbps 70 fJ

optical transmitter comprising modulator and driver.9,12 This

node, moreover, is at the core of the 3rd, 4th, and 5th most

performing computers in the top 500 supercomputer list.7

In this work, we demonstrate a waveguide-coupled pho-

todetector realized in 45 nm 12SOI, therefore, completing a

photonic toolbox within a zero-change CMOS paradigm.

Previous work on the integration of photodetectors within

zero-change CMOS has focused exclusively on surface-

illuminated devices.10,13 Nearly, all of the previous work has

relied on absorption of light by crystalline silicon and has

been restricted to k< 850 nm. An exception is the demon-

stration of a surface-illuminated detector also at k¼ 850 nm

that used the silicon-germanium (SiGe) layer within an IBM

bipolar transistor (BiCMOS) process.11 Our waveguide

photodetector provides a crucial interface between photonic

integrated circuits and CMOS electronic integrated circuits.

The waveguide detector presented here is responsive at

longer wavelengths that can be guided with low loss through

silicon photonic integrated circuits.

The photodetector is based on carrier generation in the

SiGe heteroepitaxially grown in silicon pockets. This mate-

rial is utilized in the 12SOI process for compressively

straining pFET channels, therefore, increasing the hole mo-

bility.14,15 The optical mode and the cross section of the

photodetector are shown in Fig. 1(a). On top of the crystal-

line silicon, a 172 nm wide polysilicon strip (normally uti-

lized as transistor gates) defines the waveguide core. A

300 nm wide SiGe pocket is formed next to the polysilicon.

Two well implants define a pn-diode whose junction is in

the center of the SiGe region. The germanium content is

estimated to be in the 25–35 at. % based on data of older

nodes.14 The SiGe has likely been p-type doped during epi-

taxy and is designed sufficiently narrow for avoiding the

formation of crystal dislocations.16 Source/drain implants,

silicidation, and metal bias form the electron/hole collec-

tors and complete the electrical circuit. Ground-signal (GS)

high-frequency electrodes with minimal density of metal

fill shapes (required by the foundry to minimize dishing of

the wafer) are placed parallel to the waveguide (Fig. 1(b)).

The waveguides have been designed by a fully scripted

code which became part of a complete photonic-design

automation (PDA) tool based on Cadence with abstract

photonic layers, automatic DRC-cleaning, and photonic/

electronic auto-routing.17

Photodiodes of three different SiGe lengths (1.4 lm,

9.4 lm, and 99.4 lm) have been fabricated for characterizing

the optical loss (cut-back method). Each device has both an

input and an output grating coupler. The current-voltage

characteristic of the 99.4 lm long device with and without
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illumination is given in Fig. 2(a). The dark current is less

than 10 pA resulting to a reverse-bias dynamic range of

more than 60 dB. The responsivity of the device (defined as

optical power at the photodiode input/photocurrent) was

measured as a function of wavelength by recording at the

same time input and output optical power and photocurrent

(Fig. 2(b)). The measurement was repeated a second time

with exchanged input and output fiber connectors such as to

verify that the input and output grating couplers caused the

same optical loss. For comparison, Fig. 2(b) reports also the

responsivity based on the optical absorption measured in

unstressed SiGe at various germanium concentrations18 and

based on the Macfarlane equations

a �ð Þ ¼ A
h� � Eg � kh
� �2

1� e�h=T
þ

h� � Eg þ kh
� �2

eh=T � 1

" #
;

where � is the photon frequency, Eg is the energy gap, k is

the Boltzmann constant, T¼ 295 K is the room temperature,

# is the phonon energy (expressed in K), and the sum over

the six branches of the vibrational spectrum has already been

carried out and is contained in the coefficient A. For the

bandgap and phonon energy of unstrained SiGe, we set

Eg¼ 1.088 eV, 0.991 eV, and 0.965 eV and #¼ 550 K,

480 K, and 460.4 K for the concentrations of 0%, 25%, and

32%, respectively. The bandgap data and the phonon energy

for pure silicon are as reported by Braunstein.18 With these

FIG. 1. Cross-section, optical mode, and geometry of the photodetector. (a)

Schematic cross-section of the photodiode and of the mask-set used to gen-

erate it. The optical mode is guided by the rib-waveguide structure consist-

ing of a 4 lm wide, 80 nm thick crystalline silicon and a 172 nm wide, 65 nm

thick polysilicon core. On one side of the polysilicon, 300 nm wide SiGe is

grown by heteroepitaxy. Light is coupled in and out of the waveguide

through GCs. (b) Representation of the intensity of the TE00 optical mode.

(c) View of the photodetector with 99.4 lm-long SiGe active region. GS

electrodes are located parallel to the waveguide. The first seven metal layers

are present along the entire device length (inset). (d) Photograph the fabri-

cated device monolithically integrated with an electric receiver.22

FIG. 2. Device performance. (a) Current-voltage characteristics with and

without illumination. Under illumination, the zero-current voltage is 0.75 V,

and the photocurrent is 32 lA at �1 V bias with 1.4 mW in-waveguide opti-

cal power (wavelength of 1180 nm). The dynamic range is larger than 60 dB.

(b) Responsivity vs. wavelength and the responsivity for strained and

unstrained SiGe at different concentrations based on experimental data18

and on the Macfarlane equations (legend). The model curves (legend) use

the following parameters: energy gap Eg¼ 0.991 eV and 0.965 eV and pho-

non energy #¼ 480 K and 460.4 K for unstrained alloys with 25% and 32%

germanium content, respectively (legend). The model for strained silicon-

germanium is obtained by shrinking the bandgap by 0.03 eV. (c) Frequency

response. A 3 dB bandwidth of 18 GHz is obtained at 0 V bias and of

32 GHz at �1 V bias.

041104-2 Alloatti et al. Appl. Phys. Lett. 107, 041104 (2015)
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values, good agreement is obtained with the experimental

data18 of unstrained silicon germanium. The effects of

hydrostatic strain19 on 25% germanium are taken into

account by shrinking the bandgap by 0.03 eV (Fig. 2(b)),

obtaining an upper boundary of the measured responsivity.

To determine the device responsivity based on the

absorption coefficient of silicon-germanium, we calculated

the power overlap integral of the optical mode with the SiGe

region. The overlap integral is found to vary approximately

linearly between 0.128 at a wavelength of 1170 nm and

0.121 at a wavelength of 1250 nm. At the wavelength of

1180 nm, the responsivity is 0.023 6 0.002 A/W (�1 V bias).

If no other loss mechanism was present, this responsivity

would correspond to an optical propagation loss of 10.7 dB/cm.

From the cut-back method, the optical loss was found to be

40 6 10 dB/cm and is dominated by free-carrier absorption

(FCA) in the pre-doped poly-silicon. This means that the

quantum efficiency of the present geometry can reach at least

20% in the long-device limit. Furthermore, results in a

0.18 lm bulk CMOS node20 show that the propagation loss of

optimized polysilicon waveguides can be as low as 10 dB/cm.

Because of the small optical overlap with the polysilicon

rib of the current geometry (Fig. 1), the use of low-loss poly-

silicon (in a modified process) could lead to parasitic losses

below 10 dB/cm (Ref. 21) and therefore to quantum efficien-

cies beyond 50% in the long device limit.

An alternative scheme for increasing the responsivity of

the photodiode consists of using resonant structures such as

rings. This approach would have multiple advantages: first,

the current scheme of detecting wavelength-division multi-

plexing (WDM) signals (based on a silicon ring acting like a

filter and a separate photodiode) would be simplified by the

elimination of the drop port.22 Second, the effective optical

path length would be dramatically increased without sacrific-

ing space. Third, the use of whispering gallery modes would

no longer require the use of poly-silicon, therefore eliminat-

ing the parasitic loss dominated by the latter. Finally, by

using, for example, a ring with a radius of 5 lm,12 the total

junction length would be decreased leading to a smaller ca-

pacitance. The problem of locking the resonator to the cor-

rect wavelength with an on-chip feedback loop has,

moreover, been recently addressed.22

The bandwidth of the device was measured by contact-

ing the GS electrodes with a 50 lm pitch GS probe of

Cascade Microtech (model Infinity I67-A-GS-50). The ref-

erence plane was set at the V-connector of the probe,

so that the probe is considered part of the photodiode. The

frequency response was measured with a 40 GHz VNA

(HP8722D) and the frequency-response of the setup (com-

prising modulator, semiconductor-amplifier (SOA), RF

cables, and bias-T) was calibrated with a reference photo-

diode (Discovery Semiconductors, model DSC30-3-2010)

of known frequency-response at a wavelength of 1550 nm.

It was confirmed that the frequency response of the com-

bined system of modulator and reference photodiode is

identical (within measurement accuracy) at 1550 nm and

1180 nm. The photodiode has a 3 dB bandwidth of 18 GHz

at 0 V bias. The bandwidth increases to 32 GHz with a

reverse bias of �1 V. A different set of devices, in which

the diode junction was shifted by 150 nm towards the

waveguide center, showed smaller bandwidths (8 GHz at

�1 V bias). The generated photocurrent is sufficient for

driving the on-chip electrical receiver23 which has a peak-

to-peak sensitivity of 6 lA at 5 Gb/s.22

In conclusion, we have fabricated and characterized a

waveguide-coupled photodetector compatible with unchanged

CMOS processes. The photodiode has a 3 dB bandwidth of

32 GHz at �1 V bias. The photodiode is realized in the 45 nm

CMOS node, which is widely used in high-performance

computing.
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