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Abstract—We present a general theory of oscillator phase-noise
for perturbations resulting from both white and flicker noise.
Although fundamentally different, both noise sources share in
common an underlying principle of analyzing noise in the basis of
the oscillator. These similarities allow for an integrated descrip-
tion of noise using a common set of equations. With knowledge of
the oscillation power, roundtrip delay, and spectrum of injected
noise, the phase noise of an oscillator can be determined to high
accuracy. We compare our theory to phase-noise measurements of
several RF oscillators with these three parameters independently
varied. In addition, we also test the validity of our theory against a
hybrid optoelectronic oscillator operating under entirely different
principles. Excellent agreement is found in all cases.

Index Terms—Colored noise, microwave photonics (MWPs), os-
cillators, phase noise, RF.

I. INTRODUCTION

N OISE is a problem common to all oscillator systems. Its
effect on oscillators can be decomposed into perturba-

tions of amplitude and phase, both of which act to degrade the
spectral purity of the generated signal. In typical oscillators,
the influence of phase noise is much larger than that of am-
plitude noise due to various amplitude-limiting mechanisms.
These mechanisms include not only the oscillator’s intrinsic
negative feedback, which maintains loop gain equal to loop
loss, but also the saturation of intracavity components (e.g., the
amplifier). A complete understanding of oscillator phase noise
is therefore essential for realizing future low-noise oscillator
systems.
Recently, for the case of white noise, we showed that a

common link existed between all oscillators based on the par-
titioning of noise among the modes of the oscillator [1]. In an
open system, the noise appears white over a broad range of
frequencies. However, within the confines of a resonant cavity,
the noise is forced to couple only into the basis of the system
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[2], [3]. For white noise, the coupling of noise is equal into the
local density of oscillator modes. With increasing intracavity
delay, the number of modes increases but is counteracted by a
decrease in power coupled into each mode. Note that we use the
term ‘cavity’ throughout this manuscript to denote any general
resonant configuration of the oscillator. For the oscillators that
wewill be analyzing later, the cavity geometry consists of a ring.
Here, we extend our analysis of oscillator phase-noise to the

case of low-frequency flicker noise. The case of flicker noise is
particularly important as it is what ultimately limits the phase
noise of high-performance oscillators, especially at low offset
frequencies. In general, the problem of flicker noise is difficult
to analyze as both its origin and spectral properties are not well
defined. However, as we will show, its interpretation in oscilla-
tors becomes greatly simplified if one views the frequency up-
conversion of noise from the perspective of a gain perturbation.
Historically, both linear time-invariant (LTI) and linear time-

varying (LTV) models have been proposed to explain the phe-
nomenon of oscillator phase-noise. Some of the deficiencies of
these models have been previously described in [1] and thus will
not be repeated here. Instead, our attention will be focused on
theories which that treat the effects of flicker noise on oscilla-
tors through integration over the frequency noise spectrum as-
sociated with the noise process [4]–[7]. This integral becomes
unbounded unless restrictions of finite measurement time are
taken into account [4], [5], [7], [8]. Here, we will take a similar
approach paying careful attention to the effects of measurement.
However, in contrast to previous theories, our formulation uses
the noise coupled into the oscillating mode to uniquely specify
the frequency noise spectrum corresponding to the noise pertur-
bation. Knowledge of this noise is necessary as without it, only
the shape of the oscillator’s phase-noise spectrum can be deter-
mined and not its absolute magnitude.
The goal of this work is to provide a unified description of

phase noise applicable to oscillators of both electrical and op-
tical variety. Towards that end, we will show that only three
fundamental parameters are necessary to specify the behavior of
an oscillator: the spectrum of injected noise, the roundtrip time
delay, and the oscillating power.We supplement our theory with
measurements of phase noise in RF ring-cavity oscillators and
show excellent agreement across multiple configurations and a
wide range of operating conditions. Finally, we conclude with
comparisons to the phase noise of a hybrid optoelectronic os-
cillator [9]–[12] to demonstrate the generality of the theory. As
was the case in [1], our theory is applicable to any oscillator that
can be represented through a gain element and delay wrapped in
a positive feedback circuit. Note that the delay does not have to
be purely a physical delay but can also include the group delay
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Fig. 1. Vector-based diagram of oscillator field under noise perturbation.

accumulated from signal propagation through a filter resonance.
This encompasses a broad range of oscillators operating in both
the electrical and optical domains.Wewill show that these oscil-
lators are all united by a common technique of analyzing noise
in the oscillator’s basis. The concept of a basis is fundamental
to every physical system and thus explains the widespread ap-
plicability of our phase-noise model.

II. PHASE NOISE THEORY

A. Description of an Oscillator Under Noise Perturbation

In this section, we formulate a description of oscillator phase
noise by working with spectral densities of noise processes in
the frequency domain [3]. The frequency domain allows us to
avoid ambiguities associated with the time representation of

noise. Similar to [2], [3], our theory begins with a phasor de-
scription of the oscillator field under noise perturbation (Fig. 1).
The initial field magnitude is normalized such that ,
where is the intracavity power of the signal. Without loss
of generality, the oscillator’s initial phase is taken to be 0.
The addition of a noise event, having magnitude such that

and relative phase , results in perturbation of both
the amplitude and phase of the original oscillating field. If the
phase of the noise event is random relative to that of the field,
then becomes uniformly distributed between 0 and . The
amplitude of the total signal vector is given by

(1)

where is defined as the change in oscillation power induced
by a noise event having relative phase . Alternatively, we can
define through the vector sum

. Multiplying by its complex conjugate, we find

(2)

where we have assumed . The change
in angle of the oscillating field can similarly be found
through

(3)

where again we have assumed . Note that
these approximations represent the linearization of changes in
power and phase due to a single noise event [1].
It is clear from (1) and (2) that the fluctuation in power is re-

lated to the beating between the signal field and the in-phase

component of the noise. We may change to units of fluctua-
tion rates through the identification of with and

with . and now represent the contribu-
tion rate of noise events to fluctuations of the oscillator power
and in-phase field with their time dependencies made explicit.
These quantities are equivalent to the force terms that describe
noise perturbation in Langevin analysis [13]. The corresponding
Langevin equations for and are given as

(4)

and are related through

(5)

Similarly, defining and as the contribution rate
of noise events to fluctuations of the oscillator phase and
out-of-phase field, the corresponding Langevin equations are
then given by [3]

(6)

Here, represents the fluctuations in the instantaneous fre-
quency of the oscillating field. From (3), and are
related through

(7)

Although (4) and (6) are expected to be general across all
noise processes, the Langevin analysis is typically only applied
for the case of white noise. However, we note that any colored
noise distribution can be built up from a collection of statisti-
cally-independent Ornstein-Uhlenbeck processes with varying
damping rate [8]. If necessary, one can readily construct a
system of Langevin equations to model the effects of flicker
noise.
We may take the autocorrelation of (5) and (7) obtaining

and , respectively.
Here, represents the time delay of the correlation. After
Fourier transformation into the frequency domain, the fol-
lowing relations between spectral densities can be defined

(8)

(9)

in (8) and (9) represent
spectral densities corresponding to fluctuation rates of the os-
cillator phase, power, in-phase field, and out-of-phase field, re-
spectively.
In order to proceed further, these spectral densities must be

completely specified. To do so, we consider a generic repre-
sentation of an oscillator in the geometry of a ring containing
a localized region where amplification occurs. If we take the
perspective of a signal travelling along the cavity, we would
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see that the signal undergoes amplification and noise injection
with every pass through the amplifier. Within the confines of
the oscillator boundaries, the noise is forced to emit only into
the modes of the oscillator, which together form the oscillator’s
basis. Previously in our analysis of white noise [1], we showed
that each mode received a fraction of the noise power according
to the local density of modes. In one dimension and for a single
polarization, the density of modes is given by the roundtrip
delay of the cavity , so that the number of modes within a
differential frequency interval is equal to . The spec-
tral density of the noise within becomes dis-
tributed into these modes such that each mode receives a noise
power of . In the limit where the spectral width
of the noise only encompasses a few cavity modes, the majority
of the noise couples into those modes [14], [15]. Note that this
analysis can also be extended to cavities of higher dimension-
ality and polarization, but care must be taken when accounting
for any spectral dependence of the mode density.
Our previous discussion is consistent with quantum mechan-

ical formulations of thermal noise [16], [17] where each mode
occupies an average energy , and thus the power coupled
into each mode is . Here, denotes the equilibrium
temperature of the system. Since there are modes within a
frequency interval , the total noise power delivered by all the
modes within is , which agrees with conventional
expressions for the integrated power spectral density of thermal
noise.
We now return to (8) to first determine for the

case of white noise, later extending the analysis to colored
noise. Examining (8), we see that is inherently re-
lated to the beating between the in-phase component of noise

and the signal . Here,
is the power spectral density of the in-phase noise (assumed
white) added in one roundtrip of the cavity. Dividing this
noise by yields the total in-phase noise partitioned into the
oscillating mode over the course of the roundtrip. Note that as
mentioned earlier, this analysis implicitly assumes a one-di-
mensional cavity operating in a single polarization state [1].

is related to by a factor of 2 [3]. This
factor assumes that half the total noise contributes to in-phase
fluctuations. The equal splitting of noise into amplitude and
phase is a consequence of the randomness of noise such that
the noise does not preferentially align along any particular field
direction (Fig. 1). Combining these statements with (8), one
can obtain the following form for

(10)

Note that (10) introduces one additional factor of , which
accounts for the injection of one roundtrip’s worth of noise at
a rate inverse to the roundtrip time. This factor of is a con-
sequence of defining noise fluctuations in terms of fluctuation
rates. Although (10) was not a result of rigorous derivation, its
form agrees with an analogous equation for lasers obtained inde-
pendently through Langevin analysis [3]. Furthermore, we will
see that (10) also leads to a final phase-noise spectrum equiva-
lent to that derived in [1].

We wish now to extend (10) so that it may be applied to
the case of colored noise. Our approach is to simply allow

to vary according to the shape of the noise process.
We will see that this approach yields spectral densities of
fluctuating variables that acquire the spectral shape of the noise
process itself. However, it should be mentioned that some sub-
tleties arise from our handling of colored noise in this manner.
For example, one concern is whether the rest of (10) remains
self-consistent within our interpretation of . In
particular, we note that one of the factors of in (10) accounts
for the total amount of noise coupled into the oscillating mode
per cavity roundtrip. For white noise, is in-
tuitive as it corresponds to the noise power spectral density
partitioned into the local density of cavity modes [1]. We have
not yet shown why this term remains unmodified for the case of
flicker noise especially since its spectrum is no longer white. A
secondary concern also exists pertaining to how low-frequency
flicker noise couples into the oscillation at optical or RF fre-
quencies. These topics will be delegated to the next section.
To proceed further, we require the use of (8)–(10) for deter-

mining . The first step of this procedure involves di-
viding (10) by (as per (8)) to recover

(11)

Next, we relate to . Note that if the noise is
completely random, the in-phase and out-of-phase noise contri-
butions are equal. This condition applies to conventional white
noise but does not necessarily apply to all noise processes.
In order to provide a general relation between and

, we define a factor such that .
is equal to 1 for white noise but may be a different factor if

the total noise power splits unevenly between amplitude and
phase. We combine the factor of with in (11) to
recover in the definition of . Finally, after
dividing by (as per (9)), we obtain

(12)

B. Flicker Noise in Oscillators

Equation (12) can be used to determine the spectral density of
frequency fluctuations and subsequently to calculate the phase-
noise spectrum of the oscillator. However, before doing so, let
us first examine the topic of flicker noise and address how it
affects the modes of the oscillator. Critical to this discussion
is the method by which flicker noise evolves from an inher-
ently near-DC phenomenon into a noise source at RF or optical
frequencies.
To begin, consider the scenario where an ideal signal passes

through an amplifier so that the output consists of a scaled ver-
sion of the input signal but degraded by noise. Our focus will be
on flicker noise since the system behavior under additive white
noise has already been analyzed in our earlier work [1]. Fol-
lowing [18], we see that the flicker noise near the signal fre-
quency results from a frequency upconversion process, as the
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noise is not present in the absence of a carrier. However, in
contrast to [18], we believe the flicker noise upconversion to
be intrinsic to the operation of the gain medium itself. That is,
an amplifier functions by converting DC voltage/current into
gain at frequencies extending to the bandwidth of the amplifier.
Near-DC amplifier noise, generated externally by the voltage/
current source or internally by traps/defects [19] within the am-
plifier, results in perturbation of the amplifier gain and therefore
affects all signals being amplified. As the amplification process
is multiplicative, the resulting RF flicker noise will be propor-
tional to the output signal level.
This can be more concretely seen from the amplifier input-

output relations given as

(13)

where denotes the amplifier’s field gain. represents
a time-dependent perturbation to the gain, which we attribute
to be due to low-frequency flicker noise, and
represents the amplifier’s time-dependent input (output) field.
Note that in (13), we have ignored the contribution from white
noise, which would introduce an additive noise term to the am-
plified input. This viewpoint of gain is general to any amplifier
system. If a near-DC gain fluctuation is introduced, it
is clear that this fluctuation propagates to the amplifier output
through multiplication by . Thus, even if the magnitude of

remains constant, the observed output noise will rise or
fall with the input signal level. Note that may be in-
troduced from flicker-noise fluctuations in the power supply or
from defects/traps within the amplifier. As any signal within the
bandwidth of the amplifier experiences gain, those signals all
feel the effect of the noise perturbation. However, the upcon-
verted noise for each mode ultimately depends on the strength
of that particular mode (13). Since the strength of the oscillating
mode is much larger than that of the sidemodes, the flicker noise
predominantly resides around the oscillating mode.
The preceding discussion describes the process by which

flicker noise upconverts into the frequency band of oscillation.
In the white noise case, the noise provides a direct kick to the
system, and the strength of the kick couples equally into each
of the available oscillator modes. In the flicker noise case, the
noise provides a perturbation to the gain, which then becomes
upconverted and is coupled into the oscillator modes. However,
we have not yet shown how to determine the amount of flicker
noise coupled into each mode. Quantifying the noise into the
oscillating mode is especially difficult due to the spectral
dependence of flicker noise. For example, integration over the

spectral density would yield an unbounded amount of
added noise power. One can potentially circumvent this issue
by defining cutoff frequencies for the noise process. However,
after integration, one is then left with cumbersome logarithmic
quantities dependent on the chosen integration limits. In the
end, the noise coupled into the oscillating mode must reproduce
a second factor of to be consistent with (10)–(12). We will
show in Section III that this dependence is necessary to
yield agreement with experimental observation.
One possible resolution to this issue can be seen from

(11) by equating to the Fourier transform of

where is the time delay of the corre-
lation. As noted earlier, one factor of accounts for the rate at
which the integrated roundtrip noise is added into the cavity.
We established that (11) is valid for white noise, and it is clear
that for this case the correlation must be
proportional to to recover the spectral properties of the
noise [3]. The remaining terms of the correlation
yield the strength of the total in-phase noise partitioned into the
available oscillator modes.
Let us now examine the case of flicker noise using the

same approach as before but letting vary over
frequency. Here, we assume the flicker noise process to be sta-
tionary, modeled from an ensemble of statistically independent
random processes [8]. The Fourier transform of the correlation

provides the desired shape of the
flicker noise spectrum. The remaining terms of
the correlation again appear to yield a partitioning of noise
similar to the case of white noise. This analysis suggests that
the underlying processes of flicker noise are also distributed
into the local density of cavity modes, whereas the color of
the spectrum is introduced from the correlation between noise
events.

C. Oscillator Phase-Noise Spectrum

Having established a useful interpretation of flicker noise,
we are now ready to continue with our treatment of oscillator
phase-noise. Our starting point is the Langevin equation for
fluctuations in the instantaneous frequency defined
through (6). Note that we have not included any terms governing
the coupling of amplitude and phase [2], [3] in (6). Should the
need arise, one can readily define an equivalent “linewidth en-
hancement factor” for any oscillator system. The autocorrela-
tion of (6) can be found through . Subse-
quent application of the Fourier transform yields

(14)

where is defined as the spectral density of frequency
fluctuations. It is clear that follows the same spectral
dependence as that exhibited by the noise process itself. With

defined, one can then determine the variance in the
oscillator’s phase fluctuations [3]–[7], [20] from

(15)

Equation (15) provides the result necessary for obtaining the
oscillator’s phase-noise spectrum. To show this, we apply the
Wiener-Khinchin theorem beginning with the autocorrelation
function of the electric field. When the oscillator’s amplitude
noise is negligible compared to its phase noise, this autocorre-
lation becomes [1]

(16)

where is the frequency of oscillation. Note that (16) assumes
that the phase fluctuations are Gaussian distributed (via the Cen-
tral Limit Theorem) [1]. The Fourier transform of (16) yields
the desired phase-noise spectrum of the oscillator centered at
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its oscillation frequency. Division by is also required
in order to normalize the spectrum to the carrier power.
We now apply (14)–(16) to the calculation of phase noise for

an oscillator perturbed by both white and noise. The sum of
both noise contributions can be compactly represented through

(17)

where is the strength of the phase component of white
noise at any particular frequency and is the strength of
the phase component to noise at 1 rad/s. Note that
differs from the usual flicker-noise coefficient by a factor
of since we have represented the noise in angular frequency
units. The individual contributions of white and noise are
separable and can be independently evaluated in (15). For white
noise, we find

(18)

With the identification of , (18) is identical
to (11) of [1] whose derivation makes use of a vector-based
approach to phase noise.
The same process used to determine (18) can in principle be

applied to the case of noise. Doing so, one finds that the
integral of (15) diverges to infinity when integrating through

. This divergence is a direct consequence of the large in-
crease in noise power as the frequency approaches the carrier.
However, in real (physical) systems, the measurement time is
always restricted, and the bandwidth is always finite. These con-
ditions present bounds on both the minimum and maximum fre-
quencies that effectively contribute to the measurement. Some
discussion is warranted regarding how these bounds are imple-
mented within the framework of (15).
For this discussion, we consider a thought experiment taking

the perspective of the measurement system whose purpose is
to determine the phase noise of an oscillator. Our first task is
to obtain a finite-length sample of the oscillator field. The field
we measure consists of a periodic signal embedded in random
fluctuations due to noise. We next take the field’s autocorrela-
tion as per (16) so that the spectrum may be computed from its
Fourier transform. It is clear that if the noise fluctuations of in-
terest occur slower than the time allotted to our field sampling,
then these fluctuations are effectively invisible to the measure-
ment. This introduces a low-frequency limit, below which the
noise contributions become approximately zero to the integral
of (15). Note that the original statement of (15) has the inter-
pretation that all frequencies of contribute to the ob-
served phase noise. A similar line of reasoning also follows for
the high-frequency limit where it is now the measurement band-
width that renders higher frequencies of noise to zero. How-
ever, since the integrand in (15) consists of decaying functions
with frequency, we choose instead to keep as the high-fre-
quency limit with negligible loss to accuracy. This choice sim-
plifies the number of variable definitions necessary to the setup
of the integral.
We may now evaluate (15) for noise with the help of

a lower frequency cutoff . With this bound in place, the
previous issues of divergence are circumvented. Note that in

defining , we have introduced an abrupt cutoff in the frequen-
cies that contribute to measurable phase fluctuations. Should the
need arise, a more gradual rolloff can readily be used. The inte-
gral for noise can be calculated by first recognizing that the
integrand is even and subsequently introducing as the lower
frequency limit. This integration yields

(19)

where represents the cosine integral of its argument.
To maintain self-consistency with our chosen cutoff frequency,
must be restricted so that . This condition ex-

presses the fact that although we have accounted for intro-
duced by the finite length of our sampled field, we have not
limited the time delay of our autocorrelation function ((16)).
Clearly, must be less than the duration of the field
for the overlap of the fields to bemeaningful. Having established

, we ideally would like to proceed further and sim-
plify (19) using . However, as it stands, it appears
that some error would be incurred in making this approximation
when is close to . In actuality, this error is negligible for
a wide variety of cases. Substitution of (19) into (16) shows that
the exponential of the autocorrelation becomes a strong function
of . We are specifically interested in showing this exponential
to be negligible in the range of large . This becomes true for
typical values of rad/s and under typical levels of
noise injection. For these cases, we may approximate (19) using

to obtain

(20)

where is the Euler-Mascheroni constant. In
Section III, we will show examples where we justify this
approximation for use in calculating the phase noise of an
oscillator. Furthermore, we will also apply (14)–(16) to noise
exhibiting dependence with values of other than 0 or 1.
Note that approximating introduces a sign reversal
from positive to negative in (20) when . Beyond
these limits must be set to infinity in order to
prevent this artifact from distorting the computations of (16).
To evaluate the total phase-noise spectrum, we combine (18)

and (20) in (16) and take the Fourier transform of the result. We
also normalize to the carrier power through division by . The
combined spectrum consists of the convolution between the in-
dividual phase-noise contributions due to white and noise.
The white-noise contribution leads to a Lorentzian, while the
spectrum due to noise must be evaluated numerically. It is
clear from (18)–(20) that the phase variance is dependent on the
ratio of noise to signal and on the square of the roundtrip delay.
To reduce phase noise, the noise should be minimized relative
to the oscillating signal. This can be easily achieved for white
noise through an increase in intracavity power. However, this
method becomes ineffective for the case of flicker noise whose
noise is approximately proportional to signal power. Note that
in (19) and (20), the noise and signal terms are not independent.
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For these cases, the roundtrip delay must be increased in order
to gain significant reductions in phase noise.

D. Modeling Procedure: Oscillator Phase-Noise

In this section, we provide a step-by-step prescription de-
tailing how to apply our developed theory to the modeling of
oscillator phase-noise. The overarching goal is to determine the
oscillator’s phase-noise spectrum from the Fourier transform of
(16). Note that normalization by is also required to
maintain consistency with traditional definitions of phase noise.
Equation (16) depends critically on , which can be
derived from (14) and (15) once the appropriate variables (i.e.,
the noise-to-signal ratio and the roundtrip delay) are specified.

can also be directly calculated from (18) for the case
of white noise and from (19) and (20) for noise. Below,
we summarize the steps required for the modeling of oscillator
phase-noise.
First, the total phase-noise spectrum injected into the oscil-

lator in one roundtrip of the cavity is measured. This noise can
be due to the amplifier alone or to multiple components within
the oscillator cavity. In the next section, we will quantify this
noise from measurements of the residual noise added in a single
roundtrip. This process also allows the determination of the cor-
responding signal power under oscillation. Note that the indi-
vidual components of the cavity should be operated (i.e., current
and voltage) and also driven (i.e., the signal input) under their
appropriate oscillating conditions. The ratio of the noise spec-
trum to the signal power specifies half of the unknown variables
in (14).
Second, the time delay of the system in the vicinity of the

oscillating mode is measured. This specifies the rest of the un-
known parameters in (14). The roundtrip delay can be found
from the frequency translation of the mode corresponding to a
shift in phase. An alternative method is to directly probe the

S21 response of the system and to subsequently determine the
group delay from the slope of the unwrapped phase. For the
measurements that we will be conducting in the next section,
we measure the roundtrip delay from the frequency separation
between cavity sidemodes.
Third, once (14) is specified, the calculation of (15) is ap-

plied to determine subject to the appropriate cutoff
frequency. Using in (16), normalizing the result by
, and subsequently numerically evaluating the Fourier trans-

form yields the desired oscillator phase-noise spectrum.

III. EXPERIMENTAL RESULTS

A. Comparisons to Measurement: Electrical Oscillator

In this section, we will compare the phase-noise theory of
(14)–(16) to phase-noise measurements of three different RF
ring-cavity oscillators operating at 2.5 GHz. These oscillators
all share the same generic ring architecture of Fig. 2 but differ
in the type of RF amplifier used. RF isolators were employed at
the input and output of each amplifier to allow only for unidirec-
tional oscillation. The output of the amplifier was then sent to an
output coupler where the majority (90%) of the RF power was
coupled out of the cavity. The remainder (10%) of the power
was recirculated within the cavity to drive self-oscillation. The

Fig. 2. Generic system diagram employed for three RF oscillators comprising
different types of RF amplifiers. The system delay is defined by various config-
urations of RF filters controlling the net group delay per cavity roundtrip. The
RF signal is coupled out prior to filtering allowing for direct measurement of
the noise added in each roundtrip.

other intracavity elements of the oscillator include an RF filter
for defining the oscillator operating frequency, an RF phase
shifter for tuning the oscillation frequency, and a variable RF
attenuator for controlling the operating point of the oscillator.
We wish to emphasize that the signal is coupled out directly
after the amplifier prior to any RF filtering (Fig. 2). This allows
us to directly measure the noise power added by the amplifier in
each roundtrip of the cavity before this noise is rejected by the
filter [1]. Note that there is no accumulation of noise power at
frequencies outside of the filter passband as the noise is rejected
before the completion of each cavity roundtrip.
1) Phase-Noise Measurement: For each RF amplifier used,

we measured the oscillator phase-noise under three different
configurations of the RF filter. These configurations consist of:
(i) a tunable RF filter (halfwidth at 2.5 GHz),
(ii) a tunable RF filter with 5.5 m additional
delay, and (iii) a fixed RF filter . For each
configuration, the center frequency was 2.5 GHz. By altering
the RF filter configuration, we are able to adjust the group delay
(and thus roundtrip time) induced by the resonance of the filter.
The results of the phase-noise measured by an Agilent

E5052B signal-source analyzer (SSA) are shown in Fig. 3. Note
that the measurements for each amplifier were performed at
two separate operating conditions controlled by the bias voltage
of the amplifier. At each operating point, the amplifier voltage,
intracavity loss, and output power were maintained constant
over all three filter configurations tested. The primary effect of
the different filter configurations is then to vary the roundtrip
delay experienced by the oscillating mode of the cavity. The
three amplifiers used for our measurements are as follows:
Amplifier 1 – Advantek AM-4080 M 2–4 GHz (Figs. 3(a) and
3(b)), Amplifier 2 – Miteq AFS4–02000800-45–10P 2–8 GHz
(Figs. 3(c) and 3(d)), and Amplifier 3 – Miteq AM-3A-0520–0
0.5–2 GHz (Figs. 3(e) and 3(f)). Amplifier 3 continues to pro-
vide gain at 2.5 GHz (although significantly reduced) despite
its maximum specified operating frequency of 2 GHz. We
choose this amplifier to demonstrate the wide range of cases
that our theory is applicable to. We will first, however, describe
our measured phase-noise results for these three amplifiers and
neglect for the moment the phase noise predicted by theory.
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Fig. 3. Measured (solid lines) and theoretical (solid circles) RF oscillator phase-noise for three different types of amplifiers. (a) Phase noise for Amplifier 1 at
9.12 dBm RF power. (b) Phase noise for Amplifier 1 at 11.17 dBm RF power. (c) Phase noise for Amplifier 2 at 7.27 dBm RF power. (d) Phase noise for Amplifier
2 at 10.26 dBm RF power. (e) Phase noise for Amplifier 3 at 3.85 dBm RF power. (f) Phase noise for Amplifier 3 at 6.28 dBm RF power. The RF oscillator of
Fig. 2 was tested with three filter configurations including 1) a tunable filter, 2) a tunable delay, and 3) a fixed filter. The Lorentzian phase noise
predictions (dashed line) are also shown.

It is apparent from Fig. 3 that all of the measured phase-
noise spectra exhibit Lorentzian characteristics (20 dB/decade)

at high offset frequencies but vary at a faster rate for frequen-
cies closer to the carrier. This increase in phase-noise slope sig-
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Fig. 4. Measured normalized phase noise at 100 Hz offset frequency as a func-
tion of the normalized delay for Amplifier 1 (12.0 V), Amplifier 2 (7.2 V), and
Amplifier 3 (13.5 V). The phase noise is plotted for the tunable filter, tunable

, and fixed filter configurations, normalized to the tunable filter
case. The delay is similarly normalized to the delay of the tunable filter. The
ideal dependency of phase noise on delay (dashed line) is also provided.

nifies the influence of flicker noise, as we shall see later. The
inverse roundtrip delay associated with each filter configuration
was estimated through the free-spectral-range corresponding to
the sidemode spacing of the cavity. For the configurations com-
prising a tunable filter and a tunable delay, these in-
verse roundtrip times are 62.8 MHz and 24.2 MHz, respectively
and remain approximately invariant across all three amplifiers.
In the case of the fixed filter, the sidemodes cannot be observed
as the RF filter is sufficiently narrow to pre-
vent power from accumulating at the sidemode frequencies. For
these cases, the sidemode spacing can instead be estimated using
the techniques described in Section II or by simply detuning the
phase shifter until the sidemode appears relative to the oscil-
lating mode. With these methods, the sidemode frequency was
found to be approximately 7.7 MHz for all three oscillators that
employ the fixed filter.
2) Phase-Noise Scaling With Delay: From the sidemode

frequency, or equivalently the inverse roundtrip time, one
can verify the scaling dependence of oscillator phase noise
on . The phase-noise scaling was previously found to be

for white noise in [1], and this same dependence can
also be observed in the measurements of Fig. 3. Taking as an
example the Lorentzian contribution to Fig. 3(a), the measured
phase-noise values at 1 MHz offset are for the
tunable filter, for the tunable ,
and for the fixed filter. Note that corre-
sponds to a difference of 8.3 dB between the configurations of
the tunable filter and tunable and corresponds to
a difference of 10 dB between the tunable and
the fixed filter.
These scaling relations also apply to the portions of the phase-

noise spectrum due to flicker noise, as can be seen in all the mea-
surements of Fig. 3. The corresponding results are consolidated
in Fig. 4 for an offset frequency of 100 Hz from the carrier. In
Fig. 4, the normalized phase noise is plotted as a function of the
normalized delay for Amplifier 1 (12.0 V), Amplifier 2 (7.2 V),
and Amplifier 3 (13.5 V). The delay is controlled by the con-
figuration of the oscillator (tunable filter, tunable

Fig. 5. Measured phase noise of a fixed filter oscillator as a function of RF
output power. The system oscillates from gain supplied by Amplifier 1.

delay, or fixed filter). Both the plotted phase noise and delay are
normalized to their respective values for the tunable filter case.
Ideally, one expects a 2 dB decrease in phase noise for every
1 dB increase in delay corresponding to a scaling depen-
dence. We see that the measured results agree well with these
predictions. This dependence also agrees with the form of
(10)–(12) presented in Section II.
3) Phase-Noise Scaling With Power: An inverse relation

also exists between phase noise and the corresponding signal
power of the oscillator. This relationship can in principle be de-
ciphered from Fig. 3 but is most easily seen in the measure-
ments of Fig. 5. Fig. 5 shows the phase noise of a fixed filter
oscillator as a function of the measured RF output power. The
system uses the ring-cavity configuration of Fig. 2 and oscillates
from gain supplied by Amplifier 1. The output power was varied
through the bias voltage supplied to the amplifier. Note that the
measured values of RF power represent directly the powers at
the output of the amplifier. Similar to the fixed filter cases of
Figs. 3(a) and 3(b), the sidemodes of Fig. 5 also cannot be ob-
served in the phase-noise spectrum. In its place is the broad-
band white-noise added by the amplifier in a single roundtrip
of the cavity. The filter prevents power from accumulating at
frequencies beyond its passband. It is clear from Fig. 5 that
the added white-noise floor decreases in direct proportion to
the output power. In actuality, the added white noise remains
approximately constant, and it is the normalization relative to
carrier power that causes the noise floor to decrease with RF
power. The observed clamping of the added white noise above
threshold is analogous to the clamping of spontaneous emis-
sion in a laser [1], [3]. A similar dependence on carrier power
can also be seen in the Lorentzian contribution to the spectrum
at higher offset frequencies. The Lorentzian phase-noise is in-
versely related to signal power, as was both theoretically and
experimentally shown in [1].
The properties of the Lorentzian phase noise are noticeably

different from the noise characteristics at lower offset frequen-
cies. At these offsets, upconverted flicker noise dominates over
white noise, and the shape of the phase-noise spectrum changes
to reflect this behavior. It is interesting to note that the phase
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Fig. 6. Diagram of the system used to measure the residual phase-noise added
by an RF amplifier.

noise at lower offsets appears somewhat constant and no longer
depends inversely on carrier power (see Fig. 5). These results
support our interpretation of flicker noise as a perturbation to
the amplifier gain. A fluctuation in the gain propagates into all
the modes of the oscillator supported by the gain. However, as
this process is multiplicative (13), the upconverted noise that ap-
pears around a particular mode becomes approximately propor-
tional to the strength of the mode. The end result is that the ratio
of noise-to-signal remains relatively constant since the noise
follows any increase or decrease in carrier power. Combining
the properties of white and flicker noise then, we expect that
their crossover point can be controlled through the RF power.
This behavior is apparent in Fig. 5 and can also be observed di-
rectly in noise measurements of the amplifier itself [18].
4) Amplifier Noise Measurements: Next, we compare our

theoretical predictions of oscillator phase-noise to the measure-
ments of Fig. 3. For this comparison, (14) requires the phase-
noise spectral density added in a single cavity roundtrip to be
specified relative to the oscillation power .
This quantity can be determined through a residual noise mea-
surement of the amplifier phase noise (Fig. 6). In this measure-
ment, a 2.5 GHz RF oscillator signal is equally split along two
paths. The RF path probes the RF amplifier under test with
an amount of power controllable by the variable RF attenu-
ator. The LO path passes through an RF phase shifter main-
taining quadrature between both arms. These two paths are com-
bined in a double balanced mixer thereby generating a down-
converted IF signal that is subsequently low-pass filtered to re-
move mixing harmonics. The resulting signal is then amplified
(40 dB) and detected on an Agilent E4440A spectrum analyzer.
The common-mode phase noise of the RF oscillator is rejected
by the mixing process if the LO and RF paths are balanced
in length. Similarly, the amplitude noise (of both the oscillator
and the amplifier) is also suppressed by the saturated ampli-
fier/mixer. The system of Fig. 6 then in principle measures only
the added phase noise of the amplifier at its bias point of oper-
ation. In practice, the effects of amplitude noise and oscillator
phase-noise are not completely suppressed and can both cause
distortion to the results.
Fig. 7 shows the measured residual phase-noise for Ampli-

fiers 1, 2, and 3 under the operating conditions (bias voltage
and input RF power) used in Fig. 3. These measurements are
calibrated by determining the system transfer function due to

broadband noise injection. The resulting phase noise is normal-
ized to the signal power for each of the cases in Fig. 7. It is
clear that the phase noise measured all exhibit a similar general
form. The low-frequency noise shows characteristics of ,
while the high-frequency noise flattens into a broadband floor
of white noise. The spurs at harmonics of 60 Hz are due to the
power line, while the feature near 5.5 kHz is due to noise present
in the measurement system (ground loops, etc). In addition to
these measured results, Fig. 7 also provides the asymptotic fits
to the low—and high-frequency noise spectra. For the case of
Amplifier 2, we use a slope of even though
the actual noise shape varies at a slightly faster rate. This choice
of flicker slope introduces a small error but allows for simpler
noise calculations using (20) as we will see later. A summary of
our results is provided in Table I.
As expected, the additive white phase-noise of each ampli-

fier decreases in direct proportion to its corresponding carrier
power. This is a consequence of the normalization such that
the noise power appears lower relative to the signal. Since the
operating conditions were made constant between the oscil-
lator measurements of Fig. 3 and the amplifier measurements
of Fig. 7, the white phase-noise levels between the two are
directly comparable. Note that the values of the oscillator
white phase-noise must be obtained from the fixed filter cases
since the sidemodes are not completely extinguished using
the tunable filter. The properties of flicker noise are harder
to predict since the noise upconversion process depends on
the characteristics of the amplifier (13). However in gen-
eral, the ratio of noise to signal remains relatively constant
over most of the frequency range since the upconversion
process is multiplicative. For example, Table I shows that
the flicker noise of Amplifier 1 extrapolated to 1 Hz offset is

for and is
for . Although this value has increased by
2.8 dB over a difference in power, the slope has also
increased from to /decade. The net
result is that the noise at many of the intermediate frequencies
does not change significantly in strength. It is interesting to note
that Amplifier 2 exhibits the largest flicker noise (by ),
whereas the flicker noise of Amplifier 1 and 3 are similar. These
properties can also be seen in the phase noise of the oscillators
(Fig. 3) associated with Amplifiers 1, 2, and 3.
5) Comparisons of Theory to Measurement: We now use

the measured noise properties of Amplifiers 1, 2, and 3 to
predict the phase noise of their corresponding oscillators in
Fig. 3. Most of this analysis follows from our discussions of
(14)–(20). We will however mention a few of the important
points in these calculations. First, the analysis of noise for
non-integer follows similarly from (14)–(16). When
, the integral from zero to infinity converges, and the effects
of finite measurement time can usually be ignored to good
approximation. Second, the flicker noise coefficient used in
(14) is expressed in units of angular frequency. For noise,
the conversion from linear frequency to angular frequency
results in a factor of . And third, as discussed earlier,
(20) for noise is only applicable when the autocorrelation
of (16) vanishes in the large limit. In order to apply (20) to
Amplifier 2 then, we would need to justify that this condition
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TABLE I
SUMMARY OF RF AMPLIFIER RESIDUAL PHASE-NOISE MEASUREMENTS CORRESPONDING TO AMPLIFIERS 1, 2, AND 3

is satisfied. Let us do so by first revisiting the more general
(19) and specifically evaluate the coefficient
Using and
(Table I: Amplifier 2 at 6.8 V), we find to be .
Furthermore, for ranging from 0 to 12.9 s corresponding to
the SSA measurement time, we find that rad/s.
With these values, it is clear that (19) evaluates to be much
greater than unity (and thus (16) becomes negligible) in the
limit of large . The use of (20) can be similarly justified for the
remaining operating points of and corresponding
to Amplifier 2. Note that corresponds to a lower
frequency limit of 1 Hz offset for measurements in the SSA.
This value coincides with our measurements in Fig. 3 even
though the displayed frequency range has been limited to 10
Hz offset for ease of comparison to Fig. 7.
Fig. 3 shows both the calculated and measured phase noise

for oscillators employing the three different RF amplifiers dis-
cussed previously. In the theoretical curves of Fig. 3, we have
also included the Lorentzian prediction of phase noise (dashed
line) due solely to white noise. These contributions were cal-
culated using the theory of [1], or equivalently, by combining
(18) with (16), normalizing by , and taking the Fourier trans-
form. The parameters used for this calculation consist of the
measured noise-to-signal ratios of Table I and the estimated
values of roundtrip delay discussed previously. By comparing
the Lorentzian curves to measurement, we see that the high
frequency behavior of oscillator phase-noise is accurately cap-
tured, whereas large differences are observed at low frequency
offsets. These inadequacies at low frequencies are resolved by
accounting for the effects of flicker noise using the full theory
of oscillator phase-noise (solid circles). As is apparent in Fig. 3,
the agreement of the full theory with measurement is excellent
( for white noise, for flicker noise) over most of
the frequency range. However, deviations are still present below
100 Hz for Amplifiers 1 and 3 and below 1 kHz for Amplifier
2. These deviations arise from discrepancies in the definition of
phase noise (described next) rather than from any source of er-
rors in our prediction.
Currently, there are two definitions of phase noise used

throughout literature: (1) - the spectral density of the
field and (2) - the spectral density of the phase.
is the quantity calculated from (14)–(16) as we have taken
an autocorrelation in the oscillator field. On the other hand,
measurements of phase noise effectively find instead.
This can be shown by calculating the mixer output voltage
(IF) corresponding to the measurement and subsequently de-
termining the spectrum of the result (see Appendix).

and are approximately equal at higher offset frequencies
but deviate from each other at frequencies close to the carrier.
In particular, clips at low frequencies attesting that
the oscillator spectrum is bounded. This behavior is clearly
visible in Figs. 3(c) and 3(d) but can also be seen in the other
measurements of Fig. 3. Note that is unbounded at low
frequencies reaching measured values of 25 dBc/Hz at 1 Hz
offset (not shown) for Amplifier 2. As expected, these values
cannot correspond to physical measures of the oscillator field
spectrum as they would imply the noise power integrated over
1 Hz would be larger than the total power available to the
carrier. Combined with the fact that real systems typically work
with periodic functions of phase rather than any direct phase
variable, we regard to be more fundamental than .

B. Comparisons to Measurement: Optoelectronic Oscillator

In this section, we apply (14)–(16) to a hybrid optoelectronic
oscillator (OEO) in order to demonstrate the generality of the
theory. The OEO (Fig. 8) comprises both optical and electrical
cavity elements, and net gain is achieved via a combination
of microwave-photonic (MWP) gain [21] and RF amplifica-
tion. The OEO is driven by a high-power low-noise slab-cou-
pled optical waveguide external cavity laser (SCOWECL) [22],
[23] ( at 2-A bias) whose power is controlled
by a variable optical attenuator (VOA). The other elements of
the optical cavity consist of a Mach-Zehnder (MZ) modulator
( , at 3 GHz), an optical isolator, and
a commercial photodiode , ).
Typically, an OEO would also employ a long optical fiber delay
for the goal of obtaining low phase-noise.We have excluded this
element within our cavity as the phase noise becomes too low
to measure compared to the SSA noise floor. In the electrical
path, the photodiode output is amplified by a low flicker-noise
AML26PNB2001 RF amplifier ( ,
small-signal ) and coupled out through a
RF tap. The remainder of the power (90%) is recirculated within
the cavity first to an RF phase shifter and subsequently to a 3
GHz RF filter . The optoelectronic loop is
closed by feeding the RF signal back as input drive to the MZ
modulator. Oscillation begins from the amplification of noise
incident on the modulator RF input port. Similar to the RF os-
cillator cases discussed in the previous section, the noise is cou-
pled out before passing through the filter. This allows the white
noise of a single roundtrip to be directly measured from the os-
cillator output [1].
The MWP gain in an OEO results from a two-step process

where the CW (pump) laser source is first modulated by an RF



4140 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 61, NO. 12, DECEMBER 2013

Fig. 7. Measured phase noise (solid line) with asymptotic fits (dashed line) for three different types of RF amplifiers. (a) Amplifier 1 phase noise with 9.12 dBm
output RF power. (b) Amplifier 1 phase noise with 11.17 dBm output RF power. (c) Amplifier 2 phase noise with 7.27 dBm output RF power. (d) Amplifier 2
phase noise with 10.26 dBm output RF power. (e) Amplifier 3 phase noise with 3.85 dBm output RF power. (f) Amplifier 3 phase noise with 6.28 dBm output RF
power. The phase-noise slope is also indicated for each case.

input generating sidebands around the optical carrier. The RF
information is later recovered after photodetection from the het-

erodyning of the sidebands with the carrier. For a given fre-
quency, net gain is achieved if the signal amplitude increases
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Fig. 8. Configuration of an optoelectronic oscillator (OEO) operating at
3.0 GHz. Microwave-photonic (MWP) gain is achieved by the highpower,
low-noise slab-coupled optical waveguide external cavity laser (SCOWECL),
Mach-Zehnder modulator (MZ Modulator) and photodiode.

from RF in to RF out. This process can be described through
[9], [12]

(21)

where is the amplitude of the sinusoidal output
(input) voltage and is the MZ modulator half-wave
switching voltage. consists of
a product between the optical power supplied by the laser

, the sine of the MZ modulator bias angle , the
optical attenuation accumulated from signal propagation to
the photodiode , the photodiode responsivity , and the
photodiode load resistance .
Equation (21) expresses that the MWP voltage gain from

to is dependent on the supplied voltage and a sat-
uration parameter . If , this sat-
uration parameter evaluates to a constant . However, for
larger values of , the gain quickly compresses below its small
signal value. It is clear that (21) exhibits a similar functional
form compared to the gain model introduced in (13) with
representing noise on the supply voltage. A low-frequency rela-
tive intensity noise (RIN) fluctuation of the SCOWECL source
becomes directly upconverted into a fluctuation on the carrier.
This process occurs in conjunction with the additive white noise
that directly perturbs the OEO.
Here, we are interested in comparing measurements of the

OEO phase-noise to predictions obtained from (14)–(16). Fig. 9
shows the measured 3 GHz OEO phase-noise along with the
noise floor of the SSA measurement. The SCOWECL was op-
erated at 2 A bias, while the intracavity attenuation was adjusted
to maintain 5.15 mA photocurrent. The OEO phase-noise shows
characteristics corresponding to a Lorentzian (20 dB/decade) at
high frequencies but falls off at a faster rate at low frequencies.
These phase-noise properties are indicative of a transition from
white noise to flicker noise in the spectrum of injected noise. The
SSA noise floor also suggests that the measured phase noise be-
tween 100 kHz and 1MHz is slightly high due to influence from
the noise of the measurement system. As was found for the fixed

Fig. 9. Measured (solid line) and theoretical (solid circles) phase noise of an
OEO corresponding to the configuration of Fig. 8.

filter cases of the RF oscillator, the cavity sidemodes are again
rejected here by the narrow passband of the 3 GHz filter. Sep-
arate measurements of the sidemode frequency spacing, how-
ever, determine its value to be near 3.6 MHz.
In order to calculate the OEO phase-noise, we require knowl-

edge of the injected noise in a single roundtrip of the cavity.
The added noise is the combined total from contributions of
the MWP link and also from that of the RF amplifier. We may
treat their combination as an equivalent amplifier providing gain
from RF in to RF out. The phase noise of the combined ampli-
fier can be probed using the system of Fig. 10(a) in an analo-
gous manner to a conventional amplifier (Fig. 6). For this mea-
surement, the individual components of the amplifier are driven
under their respective OEO operating conditions. This yields
14.3 dBm RF input into the MZ modulator and 18.1 dBm RF
output after the RF amplifier. The measured phase noise of the
combined amplifier is shown in Fig. 10(b). We have also pro-
vided the noise floor of the measurement, which can be seen to
slightly increase the noise at low offset frequencies. The phase
noise extrapolated to 1 Hz offset is found to be
with a slope of . This noise level is lower than
that of conventional RF amplifiers (Fig. 7) due to the use of
low-noise components in the MWP link and also to the use of a
low flicker-noise RF amplifier. The white phase-noise floor of
the combined amplifier is and matches the level
of white noise found in Fig. 9. Note that both the noise feature
near 5.5 kHz and the spurs at 60 Hz harmonics can again be ob-
served in the measurements of Fig. 10(b).
Using the measured amplifier noise characteristics, we can

now predict the phase noise of the OEO. These calculations
closely mirror that of the RF oscillator in Figs. 3 and 7.
Thus, we will only present their results which are illustrated
in Fig. 9. When only white noise is taken into account, the
spectrum is a Lorentzian (dashed line) and agrees well with
the measured OEO phase-noise at higher offset frequencies. At
low frequencies where the influence of flicker noise begins to
dominate, the agreement quickly degrades. On the other hand,
the full theory (solid circles) accurately captures the effects
of both white and flicker noise and therefore shows excellent
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Fig. 10. (a) Circuit schematic and (b) measured results for single-pass OEO residual phase-noise. The measurement system is similar to that of Fig. 6 but measures
the phase noise of the combined amplifier (MWP link RF amplifier). In addition to the OEO residual noise (solid line), the asymptotic fit (dashed line) and
measurement noise floor (dash-dot line) are also provided.

agreement to measurement. The OEO phase-noise is lower
than that corresponding to the RF oscillators of Fig. 3 even
with no intentionally added optical delay. With a factor of
10–100 increase in delay, the phase noise can be improved by
20–40 dB. Using optical fiber, this can all be achieved suffering
only small penalties in loss.

IV. CONCLUSION

We have presented a general theory of oscillator phase-noise
when the perturbation is driven by sources of white and flicker
noise. The upconversion of low-frequency noise is treated from
the perspective of a gain perturbation which then couples into
the modes of the oscillator. We apply the theory to several cases
of RF oscillators varying between their RF amplifiers used and
the configuration of their RF filter. The phase noise of each
oscillator was also tested at two separate operating points in
oscillation power. With knowledge of the oscillation power,
roundtrip delay, and corresponding injected noise spectrum, the
oscillator phase-noise was predicted to excellent accuracy. The
theory was also applied to a hybrid optoelectronic oscillator as a
demonstration to its generality. Excellent agreement was again
found in this case. Although only electromagnetic oscillators
were tested in this work, the theory can be extended to oscilla-
tors of other varieties.

APPENDIX

DERIVATION OF THE MIXER (IF) VOLTAGE OUTPUT: We
begin by considering the voltage of an oscillator defined through

(A.1)

incident on the RF arm of an ideal mixer. Here, defines the
frequency of oscillation. In (A.1), we ignore the effects of am-
plitude noise on the oscillation amplitude and use to
account for fluctuations of the oscillator’s phase. Imagine now
that one wishes to measure the phase noise using a suitably low
noise reference oscillator. The reference is sent into the LO arm
of the mixer and is phase locked to the original oscillator wave-
form so that both oscillators share the same operating frequency.

The mixer is also biased at quadrature enforcing the LO voltage
at to follow a cosine response pattern. The operation of the
mixer then generates an IF voltage that consists of the product
between the individual RF and LO signals

(A.2)

In (A.2), represents the phase fluctuations of the ref-
erence oscillator, which closely tracks by action of the
phase-locked loop. We have also introduced to account for
losses during the mixing process. The IF signal is subsequently
low-pass filtered

(A.3)

retaining only the contributions near DC. Detection of
using a spectrum analyzer yields the desired phase-noise spec-
trum of the oscillator.
Upon comparing (A.3) to (A.1), we see that is a

scaled, frequency-shifted, and biased version of the original
oscillator voltage . If is independent from
and also much lower in magnitude, this measurement would
yield approximately the phase-noise spectrum of the original
oscillator. In other words, one can always beat two oscillators
together and measure the noise of the lower-performing system.
If however is correlated with as would be the
case using a phase-locked loop, then the measured spectrum
becomes distorted by the degree of correlation. For perfect
correlation , becomes 0. This means
that the measured phase noise vanishes when one mixes an
oscillator with its twin.
Under normal operating conditions, and are

only partially correlated and only within the phase-locked
loop bandwidth. In these cases, is small
(but non-zero), and the measured phase-noise spectrum be-
comes suppressed for offset frequencies within the loop
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bandwidth. The significance is that measuring the spectrum of
is effectively equivalent to measuring the spectrum of

by virtue of the small-angle approximation.
When the phase tracking of the reference oscillator is later
accounted for in post-analysis by correcting for the distortion
at low offset frequencies, the spectral density corresponding
to is recovered. Our analysis therefore shows that it is
the spectral density of phase that is determined in an oscillator
phase-noise measurement. Note that this is only true if both the
small-angle approximation is applicable ( tracks )
and post-analysis correction is used on the measured spectrum.
These conditions apply to most measurements of oscillator
phase noise but do not apply when the spectrum is directly
detected by a spectrum analyzer. In this case, no mechanism of
phase tracking exists, and it is the spectral density of the field
that is found.
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